scholarly journals F3SNet: A Four-Step Strategy for QIM Steganalysis of Compressed Speech Based on Hierarchical Attention Network

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chuanpeng Guo ◽  
Wei Yang ◽  
Mengxia Shuai ◽  
Liusheng Huang

Traditional machine learning-based steganalysis methods on compressed speech have achieved great success in the field of communication security. However, previous studies lacked mathematical modeling of the correlation between codewords, and there is still room for improvement in steganalysis for small-sized and low embedding rate samples. To deal with the challenge, we use Bayesian networks to measure different types of correlations between codewords in linear prediction code and present F3SNet—a four-step strategy: embedding, encoding, attention, and classification for quantization index modulation steganalysis of compressed speech based on the hierarchical attention network. Among them, embedding converts codewords into high-density numerical vectors, encoding uses the memory characteristics of LSTM to retain more information by distributing it among all its vectors, and attention further determines which vectors have a greater impact on the final classification result. To evaluate the performance of F3SNet, we make a comprehensive comparison of F3SNet with existing steganography methods. Experimental results show that F3SNet surpasses the state-of-the-art methods, particularly for small-sized and low embedding rate samples.

2020 ◽  
Vol 34 (08) ◽  
pp. 13267-13272
Author(s):  
Alex Foo ◽  
Wynne Hsu ◽  
Mong Li Lee ◽  
Gilbert Lim ◽  
Tien Yin Wong

Although deep learning for Diabetic Retinopathy (DR) screening has shown great success in achieving clinically acceptable accuracy for referable versus non-referable DR, there remains a need to provide more fine-grained grading of the DR severity level as well as automated segmentation of lesions (if any) in the retina images. We observe that the DR severity level of an image is dependent on the presence of different types of lesions and their prevalence. In this work, we adopt a multi-task learning approach to perform the DR grading and lesion segmentation tasks. In light of the lack of lesion segmentation mask ground-truths, we further propose a semi-supervised learning process to obtain the segmentation masks for the various datasets. Experiments results on publicly available datasets and a real world dataset obtained from population screening demonstrate the effectiveness of the multi-task solution over state-of-the-art networks.


Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.


AI ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 261-273
Author(s):  
Mario Manzo ◽  
Simone Pellino

COVID-19 has been a great challenge for humanity since the year 2020. The whole world has made a huge effort to find an effective vaccine in order to save those not yet infected. The alternative solution is early diagnosis, carried out through real-time polymerase chain reaction (RT-PCR) tests or thorax Computer Tomography (CT) scan images. Deep learning algorithms, specifically convolutional neural networks, represent a methodology for image analysis. They optimize the classification design task, which is essential for an automatic approach with different types of images, including medical. In this paper, we adopt a pretrained deep convolutional neural network architecture in order to diagnose COVID-19 disease from CT images. Our idea is inspired by what the whole of humanity is achieving, as the set of multiple contributions is better than any single one for the fight against the pandemic. First, we adapt, and subsequently retrain for our assumption, some neural architectures that have been adopted in other application domains. Secondly, we combine the knowledge extracted from images by the neural architectures in an ensemble classification context. Our experimental phase is performed on a CT image dataset, and the results obtained show the effectiveness of the proposed approach with respect to the state-of-the-art competitors.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-18
Author(s):  
Hongchao Gao ◽  
Yujia Li ◽  
Jiao Dai ◽  
Xi Wang ◽  
Jizhong Han ◽  
...  

Recognizing irregular text from natural scene images is challenging due to the unconstrained appearance of text, such as curvature, orientation, and distortion. Recent recognition networks regard this task as a text sequence labeling problem and most networks capture the sequence only from a single-granularity visual representation, which to some extent limits the performance of recognition. In this article, we propose a hierarchical attention network to capture multi-granularity deep local representations for recognizing irregular scene text. It consists of several hierarchical attention blocks, and each block contains a Local Visual Representation Module (LVRM) and a Decoder Module (DM). Based on the hierarchical attention network, we propose a scene text recognition network. The extensive experiments show that our proposed network achieves the state-of-the-art performance on several benchmark datasets including IIIT-5K, SVT, CUTE, SVT-Perspective, and ICDAR datasets under shorter training time.


2021 ◽  
Vol 39 (1B) ◽  
pp. 101-116
Author(s):  
Nada N. Kamal ◽  
Enas Tariq

Tilt correction is an essential step in the license plate recognition system (LPR). The main goal of this article is to provide a review of the various methods that are presented in the literature and used to correct different types of tilt that appear in the digital image of the license plates (LP). This theoretical survey will enable the researchers to have an overview of the available implemented tilt detection and correction algorithms. That’s how this review will simplify for the researchers the choice to determine which of the available rotation correction and detection algorithms to implement while designing their LPR system. This review also simplifies the decision for the researchers to choose whether to combine two or more of the existing algorithms or simply create a new efficient one. This review doesn’t recite the described models in the literature in a hard-narrative tale, but instead, it clarifies how the tilt correction stage is divided based on its initial steps. The steps include: locating the plate corners, finding the tilting angle of the plate, then, correcting its horizontal, vertical, and sheared inclination. For the tilt correction stage, this review clarifies how state-of-the-art literature handled each step individually. As a result, it has been noticed that line fitting, Hough transform, and Randon transform are the most used methods to correct the tilt of a LP.


2021 ◽  
Vol 31 (5) ◽  
pp. 658-669
Author(s):  
Zoia Razumova ◽  
Nicolò Bizzarri ◽  
Joanna Kacperczyk-Bartnik ◽  
Andrei Pletnev ◽  
Antonio Gonzalez Martin ◽  
...  

This is a report from the European Society of Gynaecological Oncology State-of-the-Art Virtual Meeting held December 14–16, 2020. The unique 3-day conference offered comprehensive state-of-the-art summaries on the major advances in the treatment of different types of gynecological cancers. Sessions opened with a case presentation followed by a keynote lecture and interactive debates with opinion leaders in the field. The speakers also presented scientific reviews on the clinical trial landscape in collaboration with the European Network of Gynecological Oncological Trial (ENGOT) groups. In addition, the new ESGO-ESRTO-ESP endometrial cancer guidelines were officially presented in public. This paper describes the key information and latest studies that were presented for the first time at the conference.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 22
Author(s):  
David Fassbender ◽  
Tatina Minav

For the longest time, valve-controlled, centralized hydraulic systems have been the state-of-the-art technology to actuate heavy-duty mobile machine (HDMM) implements. Due to the typically low energy efficiency of those systems, a high number of promising, more-efficient actuator concepts has been proposed by academia as well as industry over the last decades as potential replacements for valve control—e.g., independent metering, displacement control, different types of electro-hydraulic actuators (EHAs), electro-mechanic actuators, or hydraulic transformers. This paper takes a closer look on specific HDMM applications for these actuator concepts to figure out where which novel concept can be a better alternative to conventional actuator concepts, and where novel concepts might fail to improve. For this purpose, a novel evaluation algorithm for actuator–HDMM matches is developed based on problem aspects that can indicate an unsuitable actuator–HDMM match. To demonstrate the functionality of the match evaluation algorithm, four actuator concepts and four HDMM types are analyzed and rated in order to form 16 potential actuator–HDMM matches that can be evaluated by the novel algorithm. The four actuator concepts comprise a conventional valve-controlled concept and three different types of EHAs. The HDMM types are excavator, wheel loader, backhoe, and telehandler. Finally, the evaluation of the 16 matches results in 16 mismatch values, of which the lowest indicates the “perfect match”. Low mismatch values could be found in general for EHAs in combination with most HDMMs but also for a valve-controlled actuator concept in combination with a backhoe. Furthermore, an analysis of the concept limitations with suggestions for improvement is included.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008256
Author(s):  
Shuonan Chen ◽  
Jackson Loper ◽  
Xiaoyin Chen ◽  
Alex Vaughan ◽  
Anthony M. Zador ◽  
...  

Modern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing through Non-negative Spatial Regression (BarDensr): we start with a generative model of the physical process that leads to the observed image data and then apply sparse convex optimization methods to estimate the underlying (demixed) rolony densities. We apply BarDensr to simulated and real data and find that it achieves state of the art signal recovery, particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr is fast and parallelizable. We provide open-source code as well as an implementation for the ‘NeuroCAAS’ cloud platform.


2019 ◽  
Vol 12 (3) ◽  
pp. 58-75
Author(s):  
Artiсle Editorial

On April 4–5, 2019, the Russian Helmholtz National Medical Research Center of Eye Diseases held a scientific and practical conference with international participation «Retinopathy of prematurity and retinoblastoma 2019». The conference, which became a platform for discussion of the most acute and burning issues of pediatric ophthalmology, was a great success. The proceedings reflect the state-of-the-art in the treatment of infants and children with retinopathy of prematurity and retinoblastoma, new technical and methodological solutions, controversial issues, and future prospects.


Sign in / Sign up

Export Citation Format

Share Document