scholarly journals MicroRNA-603 Promotes Progression of Cutaneous Melanoma by Regulating TBX5

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xianghua Dong ◽  
Ying Wang ◽  
Yan Qu ◽  
Junru Liu ◽  
Xien Feng ◽  
...  

Background. Although studies manifested that microRNA-603 plays a vital role in many cancers, the modulatory mechanism of microRNA-603 in cutaneous melanoma remains unknown. We aimed to investigate the roles of microRNA-603 in cutaneous melanoma cells. Methods. First, microRNA-603 expression in cutaneous melanoma cell lines was detected by qRT-PCR. The mRNA and protein expression levels of TBX5 in cutaneous melanoma cell lines were tested by qRT-PCR and western blot, respectively. In addition, the interaction between microRNA-603 and TBX5 was determined by dual-luciferase reporter gene assay, and their impacts on the growth of cutaneous melanoma cells were detected by cellular function experiments such as MTT, colony formation, and Transwell assays. Results. The expression level of microRNA-603 in human cutaneous melanoma cells was relatively upregulated. Overexpressing microRNA-603 could promote progression of cutaneous melanoma cells, while silencing microRNA-603 expression could suppress the malignant progression of cutaneous melanoma. In addition, TBX5 was lowly expressed in cutaneous melanoma cells. As confirmed by dual-luciferase assay, microRNA-603 could specifically bind to 3 ′ UTR of TBX5 and regulate TBX5. The results of the rescue experiment demonstrated that inhibiting microRNA-603 expression could suppress the proliferation, migration, and invasion of cutaneous melanoma cells, but its suppressive effect could be restored by TBX5. Conclusion. MicroRNA-603 could regulate the expression of TBX5, thus promoting the malignant progression of cutaneous melanoma cells.

2020 ◽  
Vol 21 (17) ◽  
pp. 6183
Author(s):  
Beatrice Polini ◽  
Sara Carpi ◽  
Stefano Doccini ◽  
Valentina Citi ◽  
Alma Martelli ◽  
...  

Background: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. Methods: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and –5p transfection in cutaneous melanoma cell lines are investigated. Results: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. Conclusions: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


2021 ◽  
Vol 22 (2) ◽  
pp. 537
Author(s):  
Paula Wróblewska-Łuczka ◽  
Aneta Grabarska ◽  
Magdalena Florek-Łuszczki ◽  
Zbigniew Plewa ◽  
Jarogniew J. Łuszczki

(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.


1995 ◽  
Vol 64 (3) ◽  
pp. 182-188 ◽  
Author(s):  
Eveliene Manten-Horst ◽  
Erik H. J. Danen ◽  
Lia Smit ◽  
Margriet Snoek ◽  
I. Le Caroline Poole ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinxin Kou ◽  
Hui Ding ◽  
Lei Li ◽  
Hongtu Chao

Purpose. Cisplatin is one of the most effective drugs for treating ovarian carcinoma (OC), which is among the most lethal types of carcinoma. However, the chemoresistance to cisplatin that develops over time leads to a poor clinical outcome for many OC patients. Therefore, it is necessary to clearly understand the molecular mechanisms of chemoresistance. In this study, we examined how Hsa-miR-105-1 functions in cisplatin-resistant OC cells. Methods. The levels of Hsa-miR-105-1 expression in cisplatin-sensitive and resistant OC cell lines were detected by qRT-PCR. The target gene of Hsa-miR-105-1 was predicted by using the TargetScan and Starbase databases and verified by the double luciferase reporter gene assay. The target gene of Hsa-miR-105-1 was identified as ANXA9, and ANXA9 expression was evaluated by qRT-PCR, western blotting, and immunofluorescence. To validate the function of Hsa-miR-105-1 in OC cells, we silenced or overexpressed Hsa-miR-105-1 in cisplatin-sensitive or resistant OC cell lines, respectively. Furthermore, the expression levels of several apoptosis-related proteins, including P53, P21, E2F1, Bcl-2, Bax, and caspase-3, were examined by western blot analysis. Results. The levels of Hsa-miR-105-1 expression were abnormally downregulated in cisplatin-resistant OC cells, while ANXA9 expression was significantly upregulated in those cells. Treatment with an Hsa-miR-105-1 inhibitor promoted the expression of ANXA9 mRNA and protein, enhanced the resistance to cisplatin, and attenuated the cell apoptosis induced by cisplatin in cisplatin-sensitive OC cells. Moreover, treatment with Hsa-miR-105-1 mimics inhibited ANXA9 expression, which further increased the levels of P53, P21, and Bax expression and decreased the levels of E2F1 and Bcl-2 expression, finally resulting in an increased sensitivity to cisplatin in cisplatin-resistant OC cells. Conclusion. We found that a downregulation of Hsa-miR-105-1 expression enhanced cisplatin-resistance, while an upregulation of Hsa-miR-105-1 restored the sensitivity of OC cells to cisplatin. The Hsa-miR-105-1/ANXA9 axis plays an important role in the cisplatin-resistance of OC cells.


1998 ◽  
Vol 30 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Volker Enzmann ◽  
Frank Faude ◽  
Leon Kohen ◽  
Peter Wiedemann

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 609-615 ◽  
Author(s):  
GC Baldwin ◽  
DW Golde ◽  
GF Widhopf ◽  
J Economou ◽  
JC Gasson

Abstract Hematopoietic growth factor receptors are present on cells of normal nonhematopoietic tissues such as endothelium and placenta. We previously demonstrated functional human granulocyte-macrophage colony- stimulating factor (GM-CSF) receptors on small cell carcinoma of the lung cell lines, and others have reported that certain solid tumor cell lines respond to GM-CSF in clonogenic assays. In the current study, we examine human melanoma cell lines and fresh specimens of melanoma to determine whether they have functional GM-CSF receptors. Scatchard analyses of 125I-GM-CSF equilibrium binding to melanoma cell lines showed a mean of 542 +/- 67 sites per cell with a kd of 0.72 +/- 0.14 nmol/L. Cross-linking studies in the melanoma cell line, M14, showed a major GM-CSF receptor species of 84,000 daltons. Under the conditions tested, the M14 cells did not have a proliferative response to GM-CSF in vitro, nor was any induction of primary response genes detected by Northern analysis in response to GM-CSF. Studies to determine internal translocation of the receptor-ligand complex indicated less than 10% of the 125I-GM-CSF internalized was specifically bound to receptors. Primary melanoma cells from five surgical specimens had GM-CSF receptors; Scatchard analysis was performed on one sample, showing 555 sites/cell with a kd of 0.23 nmol/L. These results indicate that human tumor cells may express a low-affinity GM-CSF receptor protein that localizes to the cell surface and binds ligand, but lacks functional components or accessory factors needed to transduce a signal.


2017 ◽  
Vol 28 (3) ◽  
pp. 307-315 ◽  
Author(s):  
Oxana O. Ryabaya ◽  
Andrey N. Inshakov ◽  
Angelina V. Egorova ◽  
Marina A. Emelyanova ◽  
Tatiana V. Nasedkina ◽  
...  

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13549-e13549
Author(s):  
Gregory B. Lesinski ◽  
Jennifer Yang ◽  
Matthew A Bill ◽  
Yosef Landesman ◽  
Sharon Shacham ◽  
...  

e13549 Background: Inhibition of nuclear export can promote re-activation of tumor suppressor pathways. CRM1 (chromosomal regional maintenance 1) or XPO1 (exportin 1) is the major protein that mediates nuclear export. We hypothesized that CRM1 mediated nuclear export represents a novel therapeutic target that can be manipulated to inhibit melanoma cell survival. Methods: The growth inhibitory and pro-apoptotic effects of KPT-185, KPT-276 and KPT-330, small molecules selective inhibitor of nuclear export (SINE) were evaluated in human melanoma cell lines using an MTT assay and Annexin V/PI staining, respectively. Fluorescence microscopy and immunoblots were used to assess nuclear accumulation of tumor suppressor proteins. The trans-isomer of KPT-185 and DMSO (vehicle) were used as a negative controls in all assays. The pharmacokinetic (PK) profile of all compounds was evaluated in mice. Results: CRM1 protein was highly expressed in human melanoma cell lines with diverse molecular profiles (i.e., B-Raf, NRAS, p53). KPT-SINE inhibited melanoma cell growth in a concentration-dependent manner and induced apoptosis at nanomolar concentrations. Importantly, there was no evidence that B-Raf V600 mutational status influenced melanoma cell response to these agents. Nuclear accumulation and/or induction of p53, p21, FOXO3a, STAT1 and BAD, and reduction of MCL-1 occurred in melanoma cells at time points prior to apoptosis as shown by increase in cleaved PARP and caspase 3 levels. PK studies were conducted in mice following oral administration of 10 mg/kg, to guide drug selection for our ongoing efficacy studies in murine melanoma models. KPT-185 showed limited bioavailability and systemic exposure, while KPT-276 and KPT-330 showed >50% bioavailability reaching Cmax >5µM. Conclusions: This study represents the first report of CRM1 inhibition in melanoma. These data indicate that the novel SINE compounds can effectively inhibit CRM1-mediated nuclear export and induce apoptosis in melanoma cells. KPT-330 is currently under development as orally bioavailable, small molecule inhibitors for a human clinical trial.


1996 ◽  
Vol 109 (7) ◽  
pp. 1957-1964 ◽  
Author(s):  
M. Goebeler ◽  
D. Kaufmann ◽  
E.B. Brocker ◽  
C.E. Klein

Recent evidence indicates that CD44, a multifunctional adhesion receptor involved in cell-cell as well as in cell-matrix interactions, plays an important role in local progression and metastasis of malignant tumors. We have studied a set of human melanoma cell lines differing in their metastatic potential in nude mice as well as in normal melanocytes for changes in CD44 expression and function. All melanocytes and melanoma cell lines tested highly expressed the CD44 standard form (CD44s, 85 kDa) but variants at low levels only. With respect to one of the CD44-associated functions primarily involved in tumor progression we found that two highly metastatic tumor cell lines, MV3 and BLM, showed fivefold higher migration rates towards hyaluronate than melanomas with low metastatic potential and normal melanocytes. Moreover, the highly metastatic cell lines expressed four- to sixfold higher levels of the CD44 epitope involved in hyaluronic acid-binding (monoclonal antibody Hermes-1) than less aggressive melanomas and melanocytes. Hermes-1 efficiently blocked haptotaxis to hyaluronate, supporting the functional relevance of this epitope. In contrast, expression levels of other CD44s epitopes recognized by seven different anti-CD44 monoclonal antibodies were unchanged, suggesting that the migratory behaviour of the cells depends on the formation of the hyaluronate-binding Hermes-1 epitope rather than on the overall CD44s surface expression, which was virtually identical in all melanoma and melanocyte cell lines tested. Differences in the accessibility of the hyaluronate-binding epitope defined by Hermes-1 correlated with the phosphorylation state of CD44s, probably reflecting different activation states of the receptor. Furthermore, immunoprecipitation and pulse/chase studies revealed a three- to fivefold increase in CD44 synthesis in the highly aggressive melanoma cells as compared to the other cell lines and the melanocytes, indicating a reduction of CD44 half-life and up-regulation of turnover. Moreover, highly aggressive melanoma cell lines were found to shed significant amounts of CD44 from the cell surface and to secrete its ligand hyaluronic acid, which may refer to an “autocrine' mechanism mediating melanoma cell motility.


Sign in / Sign up

Export Citation Format

Share Document