scholarly journals Contrast and Synthetic Multiexposure Fusion for Image Enhancement

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Marwan Ali Albahar

Many hardware and software advancements have been made to improve image quality in smartphones, but unsuitable lighting conditions are still a significant impediment to image quality. To counter this problem, we present an image enhancement pipeline comprising synthetic multi-image exposure fusion and contrast enhancement robust to different lighting conditions. In this paper, we propose a novel technique of generating synthetic multi-exposure images by applying gamma correction to an input image using different values according to its luminosity for generating multiple intermediate images, which are then transformed into a final synthetic image by applying contrast enhancement. We observed that our proposed contrast enhancement technique focuses on specific regions of an image resulting in varying exposure, colors, and details for generating synthetic images. Visual and statistical analysis shows that our method performs better in various lighting scenarios and achieves better statistical naturalness and discrete entropy scores than state-of-the-art methods.

Author(s):  
Rajni Sethi ◽  
Sreedevi Indu

Optical properties of water distort the quality of underwater images. Underwater images are characterized by poor contrast, color cast, noise and haze. These images need to be pre-processed so as to get some information. In this paper, a novel technique named Fusion of Underwater Image Enhancement and Restoration (FUIER) has been proposed which enhances as well as restores underwater images with a target to act on all major issues in underwater images, i.e. color cast removal, contrast enhancement and dehazing. It generates two versions of the single input image and these two versions are fused using Laplacian pyramid-based fusion to get the enhanced image. The proposed method works efficiently for all types of underwater images captured in different conditions (turbidity, depth, salinity, etc.). Results obtained using the proposed method are better than those for state-of-the-art methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Liyun Zhuang ◽  
Yepeng Guan

A novel image enhancement approach called entropy-based adaptive subhistogram equalization (EASHE) is put forward in this paper. The proposed algorithm divides the histogram of input image into four segments based on the entropy value of the histogram, and the dynamic range of each subhistogram is adjusted. A novel algorithm to adjust the probability density function of the gray level is proposed, which can adaptively control the degree of image enhancement. Furthermore, the final contrast-enhanced image is obtained by equalizing each subhistogram independently. The proposed algorithm is compared with some state-of-the-art HE-based algorithms. The quantitative results for a public image database named CVG-UGR-Database are statistically analyzed. The quantitative and visual assessments show that the proposed algorithm outperforms most of the existing contrast-enhancement algorithms. The proposed method can make the contrast of image more effectively enhanced as well as the mean brightness and details well preserved.


Author(s):  
Guangtao Zhai ◽  
Wei Sun ◽  
Xiongkuo Min ◽  
Jiantao Zhou

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.


Author(s):  
Audrey G. Chung ◽  
Alexander Wong

Very low-light conditions are problematic for current robotic visionalgorithms as captured images are subject to high levels of ISOnoise. We propose a Bayesian Residual Transform (BRT) model forjoint noise suppression and image enhancement for images capturedunder these low-light conditions via a Bayesian-based multiscaleimage decomposition. The BRT models a given image as thesum of residual images, and the denoised image is reconstructedusing a weighted summation of these residual images. We evaluatethe efficacy of the proposed BRT model using the VIP-LowLightdataset, and preliminary results show a notable visual improvementover state-of-the-art denoising methods.


2019 ◽  
Vol 7 (7) ◽  
pp. 200 ◽  
Author(s):  
Jaihyun Park ◽  
David K. Han ◽  
Hanseok Ko

In this paper, we propose a novel underwater image enhancement method. Typical deep learning models for underwater image enhancement are trained by paired synthetic dataset. Therefore, these models are mostly effective for synthetic image enhancement but less so for real-world images. In contrast, cycle-consistent generative adversarial networks (CycleGAN) can be trained with unpaired dataset. However, performance of the CycleGAN is highly dependent upon the dataset, thus it may generate unrealistic images with less content information than original images. A novel solution we propose here is by starting with a CycleGAN, we add a pair of discriminators to preserve contents of input image while enhancing the image. As a part of the solution, we introduce an adaptive weighting method for limiting losses of the two types of discriminators to balance their influence and stabilize the training procedure. Extensive experiments demonstrate that the proposed method significantly outperforms the state-of-the-art methods on real-world underwater images.


2019 ◽  
Vol 8 (1) ◽  
pp. 26-31
Author(s):  
V. Murali ◽  
T. Venkateswarlu

Image enhancement techniques are methods used for producing images with better quality than the original image. None of the existing methods increase the information content of the image, and are usually of little interest for subsequent automatic analysis of images. In this paper, automated Image Enhancement is achieved by carrying out Histogram techniques. Histogram equalization (HE) is a spatial domain image enhancement technique, which effectively enhances the contrast of an image. We make use of Transformation and Hyperbolization techniques for automatic image enhancement. However, while it takes care of contrast enhancement, a modified histogram equalization technique, Histogram Transformation and Hyperbolization Equalization Technique (HTHET) using optimization method is proposed using EQHIST and LINHIST.


Author(s):  
Aymen Fadhil Abbas ◽  
Usman Ullah Sheikh ◽  
Mohd Norzali Haji Mohd

This paper presents a method for vehicle make and model recognition (MMR) in low lighting conditions. While many MMR methods exist in the literature, these methods are designed to be used only in perfect operating conditions. The various camera configuration, lighting condition, and viewpoints cause variations in image quality.  In the presented method, the vehicle is first detected, image enhancement is then carried out on the detected front view of the vehicle, followed by features extraction and classification. The performance is then examined on a low-light dataset. The results show around 6% improvement in the ability of MMR with the use of image enhancement over the same recognition model without image enhancement.


2020 ◽  
Vol 2020 (1) ◽  
pp. 65-68
Author(s):  
Jake McVey

Tone curves are one of the simplest techniques for image enhancement. Specified as a function, a tone curve is a transformation that maps pixel levels of an input image to new output levels. Tone curves are the basis of many contrast enhancement algorithms, including Contrast Limited Histogram Equalisation (CLHE), which derives a tone curve from a modification of the image histogram. While these methods can provide good enhancement, they are generally non-linear. In this paper we show the surprising result that a tone curve generated by the non-linear CLHE method (and HE) can be calculated by applying a linear transform to the histogram of the input image. Experiments validate our method.


Author(s):  
Yuma Kinoshita ◽  
Hitoshi Kiya

In this paper, an automatic exposure compensation method is proposed for image enhancement. For the exposure compensation, a novel image segmentation method based on luminance distribution is also proposed. Most single-image-enhancement methods often cause details to be lost in bright areas in images or cannot sufficiently enhance contrasts in dark regions. The image-enhancement method that uses the proposed compensation method enables us to produce high-quality images which well represent both bright and dark areas by fusing pseudo multi-exposure images generated from a single image. Here, pseudo multi-exposure images are automatically generated by the proposed exposure compensation method. To generate effective pseudo multi-exposure images, the proposed segmentation method is utilized for automatic parameter setting in the compensation method. In experiments, image enhancement with the proposed compensation method outperforms state-of-the-art image enhancement methods including Retinex-based methods, in terms of both entropy and statistical naturalness. Moreover, visual comparison results show that the proposed compensation method is effective in producing images that clearly present both bright and dark areas.


2010 ◽  
Vol 3 (1) ◽  
pp. 43 ◽  
Author(s):  
M. A. Yousuf ◽  
M. R. H. Rakib

Image enhancement is one of the most important issues in low-level image processing. Histograms are the basis for numerous spatial domain processing techniques. In this paper, we present a simple and effective method for image contrast enhancement based on global histogram equalization. In this method, at first input image is normalized by making the minimum gray level value to 0.  Then the probability of each grey level is calculated from the available ROI grey levels. Finally, histogram equalization is performed on the input image based on the calculated probability density (or distribution) function. As a result, the mean brightness of the input image does not change significantly by the histogram equalization. Additionally, noise is prevented from being greatly amplified. Experimental results on medical images demonstrate that the proposed method can enhance the images effectively. The result is also compared with the result of image enhancement technique using local statistics.Keywords: Histogram equalization; Global histogram equalization; Image enhancement; Local statistics.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.5299                J. Sci. Res. 3 (1), 43-50 (2011)


Sign in / Sign up

Export Citation Format

Share Document