scholarly journals Dynamic Model and Numerical Simulation of Maximum Turbidity Zone Formation in River Inlet

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huawei Xie ◽  
Shubham Sharma ◽  
Milad Sadeghzadeh ◽  
Alibek Issakhov

The estuary of a river can be seen as a relatively free and partially closed coastal body. It is connected to the ocean and is a transitional zone of rivers, which contains processes from land to sea and from fresh water to salt water. The estuary is one of the most productive natural habitats in the world and carries a large number of sediments due to natural factors such as changes in runoff and tides. Therefore, many coastal areas with river estuaries have become the most densely populated areas in the human population. In this paper, the RSM (Reynolds stress model) turbulence model and the PID (proportional integral derivative) algorithm are successfully used to simulate the dynamic model and for the numerical simulation of the formation of turbidity maximum zone in the estuary, which provides a theoretical basis for the follow-up of the similar research studies.

Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 352
Author(s):  
Wei Wei ◽  
Valeria Trivellone ◽  
Christopher H. Dietrich ◽  
Yan Zhao ◽  
Kristi D. Bottner-Parker ◽  
...  

Phytoplasmas are obligate transkingdom bacterial parasites that infect a variety of plant species and replicate in phloem-feeding insects in the order Hemiptera, mainly leafhoppers (Cicadellidae). The insect capacity in acquisition, transmission, survival, and host range directly determines the epidemiology of phytoplasmas. However, due to the difficulty of insect sampling and the lack of follow-up transmission trials, the confirmed phytoplasma insect hosts are still limited compared with the identified plant hosts. Recently, quantitative polymerase chain reaction (qPCR)-based quick screening of 227 leafhoppers collected in natural habitats unveiled the presence of previously unknown phytoplasmas in six samples. In the present study, 76 leafhoppers, including the six prescreened positive samples, were further examined to identify and characterize the phytoplasma strains by semi-nested PCR. A total of ten phytoplasma strains were identified in leafhoppers from four countries including South Africa, Kyrgyzstan, Australia, and China. Based on virtual restriction fragment length polymorphism (RFLP) analysis, these ten phytoplasma strains were classified into four distinct ribosomal (16Sr) groups (16SrI, 16SrIII, 16SrXIV, and 16SrXV), representing five new subgroups (16SrI-AO, 16SrXIV-D, 16SrXIV-E, 16SrXIV-F, and 16SrXV-C). The results strongly suggest that the newly identified phytoplasma strains not only represent new genetic subgroup lineages, but also extend previously undiscovered geographical distributions. In addition, ten phytoplasma-harboring leafhoppers belonged to seven known leafhopper species, none of which were previously reported insect vectors of phytoplasmas. The findings from this study provide fresh insight into genetic diversity, geographical distribution, and insect host range of phytoplasmas. Further transmission trials and screening of new potential host plants and weed reservoirs in areas adjacent to collection sites of phytoplasma harboring leafhoppers will contribute to a better understanding of phytoplasma transmission and epidemiology.


2016 ◽  
Vol 40 (2) ◽  
pp. 502-512 ◽  
Author(s):  
Thomas Taupp ◽  
Claudia Hellmann ◽  
René Gergs ◽  
Carola Winkelmann ◽  
Markus A. Wetzel

2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Weixin Zhang ◽  
Ye Li ◽  
Yulei Liao ◽  
Qi Jia ◽  
Kaiwen Pan

The wave-driven catamaran is a small surface vehicle driven by ocean waves. It consists of a hull and hydrofoils, and has a multi-body dynamic structure. The process of moving from static state to autonomous navigation driven by ocean waves is called “self-propulsion”, and reflects the ability of the wave-driven catamaran to absorb oceanic wave energy. Considering the importance of the design of the wave-driven catamaran, its self-propulsion performance should be comprehensively analysed. However, the wave-driven catamaran’s multi-body dynamic structure, unpredictable dynamic and kinematic responses driven by waves make it difficult to analyse its self-propulsion performance. In this paper, firstly, a multi-body dynamic model is established for wave-driven catamaran. Secondly, a two-phase numerical flow field containing water and air is established. Thirdly, a numerical simulation method for the self-propulsion process of the wave-driven catamaran is proposed by combining the multi-body dynamic model with a numerical flow field. Through numerical simulation, the hydrodynamic response, including the thrust of the hydrofoils, the resistance of the hull and the sailing velocity of the wave-driven catamaran are identified and comprehensively analysed. Lastly, the accuracy of the numerical simulation results is verified through a self-propulsion test in a towing tank. In contrast with previous research, this method combines multi-body dynamics with computational fluid dynamics (CFD) to avoid errors caused by artificially setting the motion mode of the catamaran, and calculates the real velocity of the catamaran.


Author(s):  
Yixiang Liao ◽  
Tian Ma

AbstractBubbly flow still represents a challenge for large-scale numerical simulation. Among many others, the understanding and modelling of bubble-induced turbulence (BIT) are far from being satisfactory even though continuous efforts have been made. In particular, the buoyancy of the bubbles generally introduces turbulence anisotropy in the flow, which cannot be captured by the standard eddy viscosity models with specific source terms representing BIT. Recently, on the basis of bubble-resolving direct numerical simulation data, a new Reynolds-stress model considering BIT was developed by Ma et al. (J Fluid Mech, 883: A9 (2020)) within the Euler—Euler framework. The objective of the present work is to assess this model and compare its performance with other standard Reynolds-stress models using a systematic test strategy. We select the experimental data in the BIT-dominated range and find that the new model leads to major improvements in the prediction of full Reynolds-stress components.


2017 ◽  
Vol 64 (3) ◽  
pp. 401-418 ◽  
Author(s):  
Mateusz Jędrzejewski ◽  
Marta Poćwierz ◽  
Katarzyna Zielonko-Jung

Abstract In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.


Author(s):  
Eugen-Dan Cristea ◽  
Pierangelo Conti

The paper presents a three-dimensional (3-D), time-dependent Euler-Lagrange multiphase approach for high-fidelity numerical simulation of strongly swirling, turbulent, heavy dust-laden flows within large-sized cyclone separators, as components of the state-of-art suspension preheaters (SPH) of cement kilns. The case study evaluates the predictive performance of the coupled hybrid 3-D computational fluid dynamics–dense discrete phase model (CFD-DDPM) approach implemented into the commercial general purpose code ANSYS-Fluent R16.2, when applied to industrial cyclone collectors used to separate particles from gaseous streams. The gas (flue gases) flow is addressed numerically by using the traditional CFD methods to solve finite volume unsteady Reynolds-averaged Navier-Stokes (FV-URANS) equations. The multiphase turbulence is modeled by using an option of Reynolds stress model (RSM), namely dispersed turbulence model. The motion of the discrete (granular) phase is captured by DDPM methodology. The twin cyclones of SPH top-most stage have been analyzed extensively both for the overall pressure drop and global collection efficiency, and for the very complex multiphase flow patterns established inside this equipment. The numerical simulation results have been verified and partially validated against an available set of typical industrial measurements collected during a heat and mass balance (H&MB) of the cement kiln.


2004 ◽  
Vol 31 (2) ◽  
pp. 261
Author(s):  
N. U. Ahmed ◽  
Yongjuan He

In this paper we demonstrate that by use of modern Systems and Optimal Control theory, it is possible to formulate optimum immigration and job creation strategies while maintaining population level close to certain pre-specified targets. With this objective in mind, we consider a simplified dynamic model based on a previous model developed in (Ahmed and Rahim, 2001:325-358) to describe the population distribution in Canada. Numerical results demonstrate that the model population is in close agreement with the actual population. This model was then used to formulate a control problem with immigration and job creation rates being the decision (control) variables. Using optimal control theory, optimum immigration and job creation policies were determined. Results are illustrated by numerical simulation and they are found to be very encouraging.


Sign in / Sign up

Export Citation Format

Share Document