scholarly journals Optimization of Reinforced Aluminium Scraps from the Automobile Bumpers with Nickel and Magnesium Oxide in Stir Casting

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
V. Vijayan ◽  
A. Parthiban ◽  
T. Sathish ◽  
L. Ponraj Sankar ◽  
S. Dinesh Kumar ◽  
...  

Here, the investigation is spotlighted on the aluminium alloy from the waste materials of the automobile bumpers which is a reinforced metal matrix composite created with 5 percentage of nickel and 5 percentage of magnesium oxide through the stir casting method. The stir casting process inputs parameters such as pressure of squeezing, time of squeezing, and speed of stirrer which were optimized based on the two mechanical properties’ outcome such as the tensile strength (TS) and Rockwell hardness. There are nine different experiments which were conducted based on the L9 array. The Taguchi method is used to identify the optimum input values for the greatest result of the processing condition by Minitab software. The responses-based parameters were ordered based on the rank identified through the investigational effects. Finally, the optimized input consideration values and the linear equations are recommended for both the considered outputs as conclusions.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Narayanan ◽  
G. G. Sozhamannan ◽  
K. Hemalatha ◽  
K. Velmurugan ◽  
V. S. K. Venkatachalapathy

The objective of this work is to evaluate the corrosion behaviour of nanographene oxide reinforced aluminium (Al/GO) metal matrix composites with different immersion time periods using the immersion corrosion technique. The Al/GO composites were fabricated by the ultrasonic gravitational stir casting process. The corrosions of Al/GO were evaluated using a scanning electron microscope. The experimental results revealed that the corrosion rate decreased and weight losses increased with increasing immersion time periods. The nonimmersed Al/GO composites exhibited higher microhardness values compared to the immersed Al/GO composites.


2016 ◽  
Vol 4 (3) ◽  
pp. 1
Author(s):  
PRAKASH DWIVEDI SHASHI ◽  
SHARMA ANAND ◽  
PRATAP RAO SHASHANK ◽  
BAHUGUNA SUMIT ◽  
◽  
...  

2021 ◽  
Vol 73 (6) ◽  
pp. 980-985
Author(s):  
Kalaiyarasan A ◽  
Sundaram S ◽  
Gunasekaran K ◽  
Bensam Raj J.

Purpose Aerospace field is demanding a material with superior strength and high resistance against wear, tear and corrosion. The current study aimed to develop a new material with high performance to be applicable in aerospace field Design/methodology/approach A metal matrix composite AA8090-WC-ZrC was fabricated using stir casting method and its tribological behavior was investigated. Totally, five composites viz. AA/Z, AA/W, AA/WZ (1:3), AA/WZ (1:1) & AA/WZ (3:1) were prepared. Micro hardness, tensile and wear study were performed on the fabricated composites and the results were compared with AA8090 alloy Findings Vickers hardness test resulted that the AA/W composite showed the higher hardness value of 160 HB compared to other materials due to the reinforcing effect of WC particles with high hardness. Tensile test reported that the AA/W composite displayed the maximum tensile strength of 502 MPa owing to the creation of more dislocation density. Further, wear study showed that the AA/W composite exhibited the least wear rate of 0.0011 mm3/m because of the more resisting force offered by the WC particles. Furthermore, the AA/W composite showed the slightest mass loss of 0.0028 g and lower COF value of 0.31 due to the hinder effect of WC particle to the movement of atoms in AA8090 alloy Originality/value This work is original in the field of aerospace engineering and materials science which deals with the fabrication of AA8090 alloy with the reinforcement particles such as tungsten carbide and zirconium carbide. The impact of the combination of hybrid particles and their volume fractions on the tribological properties has been investigated in this work. This work would provide new scientific information to society.


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2015 ◽  
Vol 772 ◽  
pp. 263-267 ◽  
Author(s):  
Ramanathan Arunachalam ◽  
Majid Al-Maharbi ◽  
Yahya Al Kiyumi ◽  
Elyas Aal-Thani ◽  
Mohammed Al Mafraji

Metal matrix composites (MMC's) have attracted the attention of researchers for quite some time. In the last 15 years, many studies have been reported in this field of MMC production through various routes. The most commonly used process for producing MMC is stir casting process whereby the reinforcement material is incorporated into the molten metal by stirring. It is a relatively low cost manufacturing process that is capable of producing high quality MMC. However, the process is associated with issues such as attaining uniform distribution of particles, wettability between particles and porosity in the MMCs. Because of these challenges, there has been continuous improvement in the process as well as the design of the furnace. In this research, an innovatively designed bottom tapping furnace has been used to produce the MMCs and the produced sample is characterized.


Sign in / Sign up

Export Citation Format

Share Document