scholarly journals Multi-Component Adsorption of Benzene, Toluene, Ethylbenzene, and Xylene from Aqueous Solutions by Montmorillonite Modified with Tetradecyl Trimethyl Ammonium Bromide

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6781-6790
Author(s):  
Moammar Elbidi ◽  
Agab Hewas ◽  
Rajab Asar ◽  
Mohamad Amran Mohd Salleh

Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.



2021 ◽  
Vol 2063 (1) ◽  
pp. 012011
Author(s):  
Huda S Al-Niaeem ◽  
Ali A Abdulwahid ◽  
Whidad S Hanoosh

Abstract Hydrogels of acrylamide (AM), acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid (AMS), and acrylamide\ 2-acrylamido-2-methyl-1-propane sulphonic acid\graphene oxide (AMSGO) were prepared as adsorbents to remove carcinogenic dyes Congo red (CR) and Bismarck brown Y (BBY) from aqueous solutions. Hydrogels were characterized using FSEM and XRD analyses. For both dyes, the synthesized hydrogels demonstrated high adsorption capability at near-neutral pH. Experimental adsorption data were analyzed using the Langmuir and Freundlich isotherm models. It was found that the Langmuir model was more suitable for the experimental data. Kinetic studies found that the pseudo-second-order model demonstrated the best fitting to the experimental data. In addition, thermodynamic studies suggest that the adsorption process was spontaneous and endothermic. The prepared hydrogels were regenerated and reused in four consecutive cycles and it could be applied to remove anionic dyes from aqueous solutions as an effective adsorbent.



2021 ◽  
Vol 920 (1) ◽  
pp. 012039
Author(s):  
N N Noordin ◽  
A N Kamarudzaman ◽  
N R Rahmat ◽  
Z Hassan ◽  
M Abdul Wahab ◽  
...  

Abstract The ability of biosorbents, which are a combination of orange peels and tea waste to treat copper (II) using the biosorption method was examined. The experiment was performed under batch biosorption studies with various operating parameters. The pH, biosorbent dosage, contact time, and initial copper (II) concentration were optimized from pH 3 - 8, 0.25 - 1.0 g, 2 - 20 minutes and 10 - 100 mg/L, respectively. The findings found that a pH of 5.5, a biosorbent dosage of 0.75 g, a contact period of 5 minutes, and an initial copper (II) concentration of 10 mg/L were shown to be the best operating parameters for copper (II) biosorption. For isotherm models, the experimental data for copper (II) biosorption was fitted to the Langmuir isotherm with R2 value of 0.7775 compared to the Freundlich isotherm model with R2 value of 0.1073. The value for RL was 0.4, indicating that copper (II) biosorption using the combination of orange peels and tea waste is favourable. For kinetic models, the experimental data for copper (II) biosorption was well fitted to the pseudo-second-order kinetic model with R2 value of 0.9865 compared to the pseudo-first-order kinetic model with R2 value of 0.1006. In conclusion, the combination of orange peels and tea waste functions very well for biosorption of copper (II).



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Masoomeh Emadi ◽  
Esmaeil Shams ◽  
Mohammad Kazem Amini

Magnetite silica core-shell nanoparticles (Fe3O4-SiO2) were synthesized and evaluated as a nanoadsorbent for removing Zn(II) from aqueous solutions. The core-shell nanoparticles were prepared by combining coprecipitation and sol-gel methods. Nanoparticles were characterized by X-ray diffraction, transmission electron microscopy (TEM), and FT-IR. The magnetization values of nanoparticles were measured with vibrating sample magnetometer (VSM). The adsorption of Zn(II) ions was examined by batch equilibrium technique. The effects of pH, initial Zn(II) concentration, and contact time on the efficiency of Zn(II) removal were studied. The equilibrium data, analyzed by using Langmuir and Freundlich isotherm models, showed better agreement with the former model. Using the Langmuir isotherm model, maximum capacity of the nanoadsorbent for Zn(II) was found to be 119 mg g−1at room temperature. Kinetic studies were conducted and the resulting data were analyzed using first- and second-order equations; pseudo-second-order kinetic equation was found to provide the best correlation. The adsorption and sedimentation times were very low. The nanoadsorbent can be easily separated from aqueous solution by a magnet. Repeated adsorption acid regeneration cycles were performed to examine the stability and reusability of the nanoadsorbent. The result of this study proved high stability and reusability of Fe3O4-SiO2as an adsorbent for Zn(II) ions.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Oana Grad ◽  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duțeanu ◽  
Gabriela Vlase ◽  
...  

AbstractPlatinum group metals (PGMs) palladium, platinum, and ruthenium represent the key materials for automotive exhaust gas treatment. Since there are no adequate alternatives, the importance of these metals for the automotive industry is steadily rising. The high value of PGMs in spent catalysts justifies their recycling. Therefore, it is really important to recovery platinum group metals from aqueous solutions. Of the many PGMs recovery procedures, adsorption is a process with a good efficiency, but an important role is played by the adsorbent material used into the process. In order to improve the adsorption properties of materials were developed new methods for chemical modification of the solid supports, through functionalization with different extractants. In present paper a new adsorbent material (Chitosan-DB18C6) was used for PGMs recovery. The new adsorbent material was produced by impregnating Chitosan with dibenzo-18-crown-6-ether using Solvent Impregnated Resin (SIR) method. The crown ethers were chosen as extractant due to their known ability to bind metallic ions, whether they are symmetrically or unsymmetrically substituted. In order to determine the PGMs recovery efficiency for new prepared adsorbent material the equilibrium and kinetic studies were performed. Also, to study the PGMs adsorption mechanism the experimental data were modelled using pseudo-first-order and pseudo-second order kinetic models. Experimental data were fitted with three equilibrium isotherm models: Langmuir, Freundlich and Sips. The results proved that new adsorbent material (Chitosan-DB18C6) is an efficient adsorbent for PGMs recovery from aqueous solutions.



2019 ◽  
Vol 13 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Warren Reátegui-Romero ◽  
Walter J. Cadenas-Vásquez ◽  
María E. King-Santos ◽  
Walter F. Zaldivar Alvarez ◽  
Ricardo A. Y. Posadas

Objectives: The Pb non-biodegradability results in bioaccumulation in living organisms causing serious health disorders. The present study aimed to investigate the capacity of Pb (II) adsorption in aqueous solutions using the Brassica nigra species as biosorbent. Methods: The present study was conducted using a synthetic solution with three Pb (II) concentrations (5, 15, and 30 ppm). The B. nigra was suitably treated until it became dry particles. After sifting it, three ranges of grain sizes were obtained. Samples of dry particles were analyzed before and after the biosorption to analyze their topography (SEM), as well as the elements on their surface (EDS). The influence of different operating variables on the biosorption of Pb (II) were analyzed. Kinetics of Pb (II) biosorption was analyzed with pseudo first and second order models. The biosorption in the equilibrium was studied with the Langmuir isotherm and Freundlich isotherm models. Results: The biosorbent B. nigra showed to be efficient for the adsorption of Pb (II). The most influential variables in the adsorption were pH, particle size, and biosorbent/solution ratio. The optimum pH for the adsorption of lead was 5 and removed 82.10% of lead from solution at 5 ppm, 82.24% at 15 ppm and 57.95% at 30 ppm. The results for the particle size between 177 and 297 μm were 82.65% for 5 ppm, 73.71% for 15 ppm, and 53.54% for 30 ppm. The biosorbent/solution ratio of 0.6 mg/mL or the 30 mg dose of biosorbent removed 80.26% for 5 ppm, 79.32% for 15 ppm, and 59.87% for 30 ppm. Biosorption isothermal data could be well interpreted by the Langmuir model with a maximum adsorption capacity of 53.476 mg/g of lead ion on B. nigra stem and roots biomass. The kinetic experimental data was properly correlated with the second-order kinetic model (R2 = 0.9997). Thus, the best desorbing agent was HNO3 (0.1N) for Pb (II) desorption. Conclusion: Our study showed that the herb B. nigra, without any chemical treatment, can be used to remove heavy metals such as Pb (II) from water and aqueous solution.



2017 ◽  
Vol 20 (1) ◽  
pp. 69-82

The biosorption of Cr (III), Zn (II) and Ni (II) ions from aqueous solution by dead blue algal biomass (Cyanophyta) was investigated in single metal system and batch conditions. Experimental parameters included contact time (0-140 min), pH (2-8), sorbent dose (0.1-2.0 g), initial concentrations (10-120 mg/L), agitation speeds (50-300 rpm) and temperatures (298-232K) were investigated. The best values of pH were found 4 for Cr+3, Zn+2 and 5 for Ni+2, respectively. The biosorption process was relatively fast and equilibrium established after 90 min. Equilibrium isotherm experiments data were analyzed by Langmuir and Freundlich isotherm models and Langmuir isotherms gives the best fit to the experimental data. Biosorption kinetic models were used for the single metal system using the dead blue algal biomass, good matching was found between pseudo second order kinetic model and experimental data for Cr (III), Zn (II), and Ni (II) ions systems. Thermodynamic parameters included Go; Ho and So during the process were calculated, the results show that the biosorption process applied to remove Cr (III), Zn (II) and Ni (II) ions using blue algal biomass (Cyanophyta) is feasible, spontaneous and exothermic at 10 – 30 °C. The results indicated that blue algal biomass (Cyanophyta) could be used as a good sorbent for treatment of industrial effluents containing Cr (III), Zn (II) and Ni (II) ions in single metal system.



Author(s):  
Bingxin Xie ◽  
Jihong Qin ◽  
Shu Wang ◽  
Xin Li ◽  
Hui Sun ◽  
...  

Adsorption by activated carbons (AC) is an effective option for phenolic wastewater treatment. Three commercial AC, including coal-derived granular activated carbons (GAC950), coal-derived powdered activated carbons (PAC800), and coconut shell-derived powdered activated carbons (PAC1000), were utilized as adsorbent to study its viability and efficiency for phenol removal from wastewater. Pseudo-first order, pseudo-second order, and the Weber–Morris kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. Further, to describe the equilibrium isotherms, the experimental data were analyzed by the Langmuir and Freundlich isotherm models. According to the experimental results, AC presented a micro/mesoporous structure, and the removal of phenol by AC was affected by initial phenol concentration, contact time, pH, temperature, and humic acid (HA) concentration. The pseudo-second order kinetic and Langmuir models were found to fit the experimental data very well, and the maximum adsorption capacity was 169.91, 176.58, and 212.96 mg/g for GAC950, PAC800, and PAC1000, respectively, which was attributed to differences in their precursors and physical appearance. Finally, it was hard for phenol to be desorbed in a natural environment, which confirmed that commercial AC are effective adsorbents for phenol removal from effluent wastewater.



2020 ◽  
Vol 21 (2) ◽  
pp. 15-23
Author(s):  
Teba Hameed Mhawesh ◽  
Ziad T. Abd Ali

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three isotherm models called Langmuir, Freundlich and Elovich, The results showed that the Freundlich isotherm model described well the sorption data (R2=0.9176) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo-first-order and pseudo-second-order. The pseudo-first-order kinetic model was found to agree well with the experimental data.  



Author(s):  
Yusef Omidi Khaniabadi ◽  
Hassan Basiri ◽  
Heshmatollah Nourmoradi ◽  
Mohammad Javad Mohammadi ◽  
Ahmad Reza Yari ◽  
...  

AbstractIn this study, the sorption of Congo red (CR), as a toxic dye, from aqueous media was investigated using montmorillonite (MMT) as a low-cost adsorbent. The influence of several factors such as contact time, pH, adsorbent dosage, dye content, and ionic strength was investigated on the dye removal. MMT was characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). Different kinetic and isotherm models including pseudo-first and pseudo-second order kinetic and Langmuir and Freundlich were applied to analyze experimental data, respectively. The results showed that the data were well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The optimum conditions for the sorption of CR were achieved over 40 min and at pH=2. According to the results of the present study, MMT can be used as a low-cost, eco-friendly and effective option for the adsorption of CR from aqueous solutions.



Sign in / Sign up

Export Citation Format

Share Document