scholarly journals Research on the Method of Coke Optical Tissue Segmentation Based on Adaptive Clustering

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huaiguang Liu ◽  
Liheng Zhang ◽  
Shiyang Zhou ◽  
Li Fang

The microstructure is the key factor for quality discriminate of coke. In view of the characteristics of coke optical tissue (COT), a segmentation method of coke microstructures based on adaptive clustering was proposed. According to the strategy of multiresolution, adaptive threshold binarization and morphological filtering were carried out on COT images with lower resolution. The contour of the COT body was detected through the relationship checking between contours in the binary image, and hence, COT pixels were picked out to cluster for tissue segmentation. In order to get the optimum segmentation for each tissue, an advanced K -means method with adaptive clustering centers was provided according to the Calinski-Harabasz score. Meanwhile, Euclidean distance was substituted with Mahalanobis distance between each pixel in HSV space to improve the accuracy. The experimental results show that compared with the traditional K -means algorithm, FCM algorithm, and Meanshift algorithm, the adaptive clustering algorithm proposed in this paper is more accurate in the segmentation of various tissue components in COT images, and the accuracy of tissue segmentation reaches 94.3500%.

2010 ◽  
Vol 44-47 ◽  
pp. 3897-3901
Author(s):  
Hsiang Chuan Liu ◽  
Yen Kuei Yu ◽  
Jeng Ming Yih ◽  
Chin Chun Chen

Euclidean distance function based fuzzy clustering algorithms can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) clustering algorithm were developed to detect non-spherical structural clusters by employing Mahalanobis distance in objective function, however, both of them need to add some constrains for Mahalanobis distance. In this paper, the authors’ improved Fuzzy C-Means algorithm based on common Mahalanobis distance (FCM-CM) is used to identify the mastery concepts in linear algebra, for comparing the performances with other four partition algorithms; FCM-M, GG, GK, and FCM. The result shows that FCM-CM has better performance than others.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Tao Du ◽  
Shouning Qu ◽  
Qin Wang

Clustering is an important unsupervised machine learning method which can efficiently partition points without training data set. However, most of the existing clustering algorithms need to set parameters artificially, and the results of clustering are much influenced by these parameters, so optimizing clustering parameters is a key factor of improving clustering performance. In this paper, we propose a parameter adaptive clustering algorithm DDPA-DP which is based on density-peak algorithm. In DDPA-DP, all parameters can be adaptively adjusted based on the data-driven thought, and then the accuracy of clustering is highly improved, and the time complexity is not increased obviously. To prove the performance of DDPA-DP, a series of experiments are designed with some artificial data sets and a real application data set, and the clustering results of DDPA-DP are compared with some typical algorithms by these experiments. Based on these results, the accuracy of DDPA-DP has obvious advantage of all, and its time complexity is close to classical DP-Clust.


2011 ◽  
Vol 411 ◽  
pp. 572-575 ◽  
Author(s):  
Gang Li ◽  
Hong Xi Wang ◽  
Jian Zhuang

Aim at the problem that there is an irregular data distribution when using multi-sensor to monitor machine conditions, a genetic clustering algorithm using geodesic distance metric (GCGD) is adopted to perform machine fault detection. In GCGD, a geodesic distance based proximity measure is employed replacing Euclidean distance that cannot correctly describe the relationship between data lying in a manifold, and GCGD determines partitioning of the feature vectors from a combinatorial optimization viewpoint. Fault detection experiments of inlet valve leakage in a two-stage reciprocating compressor reveal that GCGD achieves a better performance of fault detection than the K-means algorithm and a genetic algorithm based clustering technique.


2020 ◽  
Vol 4 (2) ◽  
pp. 780-787
Author(s):  
Ibrahim Hassan Hayatu ◽  
Abdullahi Mohammed ◽  
Barroon Ahmad Isma’eel ◽  
Sahabi Yusuf Ali

Soil fertility determines a plant's development process that guarantees food sufficiency and the security of lives and properties through bumper harvests. The fertility of soil varies according to regions, thereby determining the type of crops to be planted. However, there is no repository or any source of information about the fertility of the soil in any region in Nigeria especially the Northwest of the country. The only available information is soil samples with their attributes which gives little or no information to the average farmer. This has affected crop yield in all the regions, more particularly the Northwest region, thus resulting in lower food production.  Therefore, this study is aimed at classifying soil data based on their fertility in the Northwest region of Nigeria using R programming. Data were obtained from the department of soil science from Ahmadu Bello University, Zaria. The data contain 400 soil samples containing 13 attributes. The relationship between soil attributes was observed based on the data. K-means clustering algorithm was employed in analyzing soil fertility clusters. Four clusters were identified with cluster 1 having the highest fertility, followed by 2 and the fertility decreases with an increasing number of clusters. The identification of the most fertile clusters will guide farmers on where best to concentrate on when planting their crops in order to improve productivity and crop yield.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Daisuke Fujiwara ◽  
Naoki Tsujikawa ◽  
Tetsuya Oshima ◽  
Kojiro Iizuka

Abstract Planetary exploration rovers have required a high traveling performance to overcome obstacles such as loose soil and rocks. Push-pull locomotion rovers is a unique scheme, like an inchworm, and it has high traveling performance on loose soil. Push-pull locomotion uses the resistance force by keeping a locked-wheel related to the ground, whereas the conventional rotational traveling uses the shear force from loose soil. The locked-wheel is a key factor for traveling in the push-pull scheme. Understanding the sinking behavior and its resistance force is useful information for estimating the rover’s performance. Previous studies have reported the soil motion under the locked-wheel, the traction, and the traveling behavior of the rover. These studies were, however, limited to the investigation of the resistance force and amount of sinkage for the particular condition depending on the rover. Additionally, the locked-wheel sinks into the soil until it obtains the required force for supporting the other wheels’ motion. How the amount of sinkage and resistance forces are generated at different wheel sizes and mass of an individual wheel has remained unclear, and its estimation method hasn’t existed. This study, therefore, addresses the relationship between the sinkage and its resistance force, and we analyze and consider this relationship via the towing experiment and theoretical consideration. The results revealed that the sinkage reached a steady-state value and depended on the contact area and mass of each wheel, and the maximum resistance force also depends on this sinkage. Additionally, the estimation model did not capture the same trend as the experimental results when the wheel width changed, whereas, the model captured a relatively the same trend as the experimental result when the wheel mass and diameter changed.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-18
Author(s):  
Kai Liu ◽  
Xiangyu Li ◽  
Zhihui Zhu ◽  
Lodewijk Brand ◽  
Hua Wang

Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clustering applications. From movie recommendations and image clustering to visual feature extractions, NMF has applications to solve a large number of knowledge discovery and data mining problems. Traditional optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed. To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a solution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the objective and matrix factors converge. In addition, we show the relationship between MUA and our solution followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets validate the correctness of our proposed method and its utility as an effective clustering algorithm.


2011 ◽  
Vol 55-57 ◽  
pp. 1992-1996
Author(s):  
Tie Qun Li

The former researches referring to inflation and real estate prices concentrated mainly on the stock prices rather than the real estate prices. Owing to the enlarging ratio of real estate industry in national economy with each passing day, as well as the overheating real estate prices in recent years, the relationship between real estate prices and inflation is particularly vital to the monetary policy making for the monetary authorities. According to the test analysis of data from 2001 to 2009, it is found that real estate prices is Granger Cause of inflation while inflation is not the Granger Cause of real estate prices in this paper. Through the Effects of Wealth, Credit and Tobin, real estate prices drive the growth of social consumption and investments and expand the total social demand which possess an positive effect on inflation; nevertheless the rising of real estate prices causes the rising of currency for real estate purchasing, which, under the circumstance of that currency supply remains, will inevitably bring about the reduction of currency for other consumption and investments and restrain the total social demand which would mean a suppression of continuous rising of prices of other commodity and labor service. All these show that real estate also has a negative effect on inflation. The cancellations between the two effects make the long-term influence real estate bearing on inflation is not obvious. The experimental results indicate that when the price of real estate rises 1%, inflation only rises 0.058%. Consequently, a strict controlling of the amount of money issued is the key factor for keeping the over rapid rising of real estate prices from leading to inflation.


2013 ◽  
Vol 284-287 ◽  
pp. 3537-3542
Author(s):  
Chin Chun Chen ◽  
Yuan Horng Lin ◽  
Jeng Ming Yih

Knowledge Management of Mathematics Concepts was essential in educational environment. The purpose of this study is to provide an integrated method of fuzzy theory basis for individualized concept structure analysis. This method integrates Fuzzy Logic Model of Perception (FLMP) and Interpretive Structural Modeling (ISM). The combined algorithm could analyze individualized concepts structure based on the comparisons with concept structure of expert. Fuzzy clustering algorithms are based on Euclidean distance function, which can only be used to detect spherical structural clusters. A Fuzzy C-Means algorithm based on Mahalanobis distance (FCM-M) was proposed to improve those limitations of GG and GK algorithms, but it is not stable enough when some of its covariance matrices are not equal. A new improved Fuzzy C-Means algorithm based on a Normalized Mahalanobis distance (FCM-NM) is proposed. Use the best performance of clustering Algorithm FCM-NM in data analysis and interpretation. Each cluster of data can easily describe features of knowledge structures. Manage the knowledge structures of Mathematics Concepts to construct the model of features in the pattern recognition completely. This procedure will also useful for cognition diagnosis. To sum up, this integrated algorithm could improve the assessment methodology of cognition diagnosis and manage the knowledge structures of Mathematics Concepts easily.


Author(s):  
Hassan Gharayagh Zandi ◽  
Sahar Zarei ◽  
Mohammad Ali Besharat ◽  
Davoud Houminiyan sharif abadi ◽  
Ahmad Bagher Zadeh

Coaching has often been viewed as a context within which coaches operate to largely bring about changes in athlete’s performance and flourishing. One key factor to successful outcomes in coaching is the quality of the relationship between coaches and athletes. The coach–athlete relationship is at the heart of coaching; however, limited studies have been conducted on its antecedents. The aim of this study was to investigate the relationship between coaches’ forgiveness and perceived relationship quality toward their athletes through verifying the mediating role of interpersonal behaviors of coaches. A total of 270 Iranian coaches participated in the survey, and the data sets were analyzed using structural equation modeling. Results revealed that forgiveness positively predicted the coaches’ perceived relationship quality with their athletes, and this pathway was mediated by the coaches’ interpersonal behaviors.


Sign in / Sign up

Export Citation Format

Share Document