scholarly journals Detection of Oil Spill Using SAR Imagery Based on AlexNet Model

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xinzhe Wang ◽  
Jiaxu Liu ◽  
Shuai Zhang ◽  
Qiwen Deng ◽  
Zhuo Wang ◽  
...  

Synthetic aperture radar (SAR) plays an irreplaceable role in the monitoring of marine oil spills. However, due to the limitation of its imaging characteristics, it is difficult to use traditional image processing methods to effectively extract oil spill information from SAR images with coherent speckle noise. In this paper, the convolutional neural network AlexNet model is used to extract the oil spill information from SAR images by taking advantage of its features of local connection, weight sharing, and learning for image representation. The existing remote sensing images of the oil spills in recent years in China are used to build a dataset. These images are enhanced by translation and flip of the dataset, and so on and then sent to the established deep convolutional neural network for training. The prediction model is obtained through optimization methods such as Adam. During the prediction, the predicted image is cut into several blocks, and the error information is removed by corrosion expansion and Gaussian filtering after the image is spliced again. Experiments based on actual oil spill SAR datasets demonstrate the effectiveness of the modified AlexNet model compared with other approaches.

2020 ◽  
Vol 12 (6) ◽  
pp. 944 ◽  
Author(s):  
Jin Zhang ◽  
Hao Feng ◽  
Qingli Luo ◽  
Yu Li ◽  
Jujie Wei ◽  
...  

Oil spill detection plays an important role in marine environment protection. Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this task, and different SAR polarimetric features have the advantages to recognize oil spill areas from other look-alikes. In this paper we proposed an oil spill detection method based on convolutional neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman 3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets. Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets. The classification accuracy of all kinds of targets types were improved, and the largest increase on mean MIoU of all features sets was on emulsions by 21.9%.


2021 ◽  
Vol 13 (17) ◽  
pp. 3444
Author(s):  
Hao Wang ◽  
Zhendong Ding ◽  
Xinyi Li ◽  
Shiyu Shen ◽  
Xiaodong Ye ◽  
...  

Synthetic aperture radar (SAR) images are often disturbed by speckle noise, making SAR image interpretation tasks more difficult. Therefore, speckle suppression becomes a pre-processing step. In recent years, approaches based on convolutional neural network (CNN) achieved good results in synthetic aperture radar (SAR) images despeckling. However, these CNN-based SAR images despeckling approaches usually require large computational resources, especially in the case of huge training data. In this paper, we proposed a SAR image despeckling method using a CNN platform with a new learnable spatial activation function, which required significantly fewer network parameters without incurring any degradation in performance over the state-of-the-art despeckling methods. Specifically, we redefined the rectified linear units (ReLU) function by adding a convolutional kernel to obtain the weight map of each pixel, making the activation function learnable. Meanwhile, we designed several experiments to demonstrate the advantages of our method. In total, 400 images from Google Earth comprising various scenes were selected as a training set in addition to 10 Google Earth images including athletic field, buildings, beach, and bridges as a test set, which achieved good despeckling effects in both visual and index results (peak signal to noise ratio (PSNR): 26.37 ± 2.68 and structural similarity index (SSIM): 0.83 ± 0.07 for different speckle noise levels). Extensive experiments were performed on synthetic and real SAR images to demonstrate the effectiveness of the proposed method, which proved to have a superior despeckling effect and higher ENL magnitudes than the existing methods. Our method was applied to coniferous forest, broad-leaved forest, and conifer broad-leaved mixed forest and proved to have a good despeckling effect (PSNR: 23.84 ± 1.09 and SSIM: 0.79 ± 0.02). Our method presents a robust framework inspired by the deep learning technology that realizes the speckle noise suppression for various remote sensing images.


2014 ◽  
Vol 1065-1069 ◽  
pp. 3192-3200 ◽  
Author(s):  
Teng Fei Su ◽  
Hong Yu Li ◽  
Ting Xi Liu

Synthetic aperture radar (SAR), a sensor with all weather and day and night working capacity, has been considered one of the most powerful tools for sea surface oil spill detection. However, lookalikes frequently appear in SAR images, limiting the operational use of SAR to detect oil spilled at sea. 20 scenes of Envisat ASAR images, which were acquired during the oil spill accident in the Gulf of Mexico in 2010, are utilized, with the objective to study how to better differentiate oil spills from lookalikes. 145 and 134 samples for oil spill and lookalike, respectively, are extracted, and their object-based geometric, physical and textural features are analyzed, in order to find the most effective features for oil spill classification. Based on the results of feature analysis, fuzzy logic (FL) is employed to construct a classifier for oil spill detection. One advantage of the proposed method is that it can produce the crisp probability of a dark segment being oil spill. The experiment shows that our method can derive promising result.


2021 ◽  
Vol 14 (1) ◽  
pp. 177-184
Author(s):  
Amarif Abimanyu ◽  
Widodo S. Pranowo ◽  
Ibnu Faizal ◽  
Najma K. A. Afandi ◽  
Noir P. Purba

Oil spill phenomena in the ocean possess a very serious threat to ocean health. On the ocean surface, oil slicks immediately start to spread and mostly end up in the ecosystem. Furthermore, it could threaten the organisms living in the ocean or impact nearby coastal area. The aim of this research was to investigate the trajectories of oil spill based on a real accident in the Java Sea. Tracking oil spills using satellite images is an efficient method that provides valuable information about trajectories, locations and the spread intensity. The objective of this study was to periodically track the trajectory of the oil spill from the Karawang incident using Sentinel-1 Synthetic Aperture Radar (SAR) images. Pre-processing of the images consisted of radiometric and geometric corrections. After the corrections, SAR images were mapped and plotted accordingly. To understand the oil spill trajectories in relation to the oceanic processes, the ocean current pattern map and surface wind roses were also analysed. The processed images from July to October 2019 show a trajectory dominated by the oil spill layers movement towards the west to northwest from the original location along with a decrease in the detected oil spill area over time. The identified trajectories of the oil spill followed the ocean current pattern and surface winds. Thus, these two parameters were considered to be the main factors responsible for the oil spill drift.


Author(s):  
L. J. Vijaya kumar ◽  
J. K. Kishore ◽  
P. Kesava Rao ◽  
M. Annadurai ◽  
C. B. S. Dutt ◽  
...  

Oil spills in the ocean are a serious marine disaster that needs regular monitoring for environmental risk assessment and mitigation. Recent use of Polarimetric SAR imagery in near real time oil spill detection systems is associated with attempts towards automatic and unambiguous oil spill detection based on decomposition methods. Such systems integrate remote sensing technology, geo information, communication system, hardware and software systems to provide key information for analysis and decision making. <br><br> Geographic information systems (GIS) like BHUVAN can significantly contribute to oil spill management based on Synthetic Aperture Radar (SAR) images. India has long coast line from Gujarat to Bengal and hundreds of ports. The increase in shipping also increases the risk of oil spills in our maritime zone. The availability of RISAT-1 SAR images enhances the scope to monitor oil spills and develop GIS on Bhuvan which can be accessed by all the users, such as ships, coast guard, environmentalists etc., The GIS enables realization of oil spill maps based on integration of the geographical, remote sensing, oil & gas production/infrastructure data and slick signatures detected by SAR. SAR and GIS technologies can significantly improve the realization of oil spill footprint distribution maps. Preliminary assessment shows that the Bhuvan promises to be an ideal solution to understand spatial, temporal occurrence of oil spills in the marine atlas of India. The oil spill maps on Bhuvan based GIS facility will help the ONGC and Coast Guard organization.


Author(s):  
C. Zhou ◽  
J. Li ◽  
H. Shen ◽  
Q. Yuan

Abstract. Speckle noise is an intrinsic property of Synthetic Aperture Radar (SAR) imagery, which affects the quality of image. Single-temporal despeckling methods usually pay attention to the utilization of spatial information, but sometimes due to lack of sufficient information, the despeckling image is too smooth or losses some information about edge details. However, multi-temporal SAR images can provide extra information for despeckling resulting in better performance. Therefore, in this paper, we proposed a novel multi-temporal SAR despeckling method based a convolutional neural network (MSAR-CNN) embedded temporal and spatial attention (TSA) module to deeply mine the spatial and temporal correlation of multitemporal SAR images. The whole network, which is end-to-end trained with simulate realistic SAR data, consists of several residual blocks. In addition, the simulated and real-data experiments demonstrate that the proposed MSAR-CNN outperforms most of the mainstream methods in both the quantitative evaluation indexes and visual effects.


2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Zhehao Yang ◽  
Weizeng Shao ◽  
Yuyi Hu ◽  
Qiyan Ji ◽  
Huan Li ◽  
...  

Marine oil spills occur suddenly and pose a serious threat to ecosystems in coastal waters. Oil spills continuously affect the ocean environment for years. In this study, the oil spill caused by the accident of the Sanchi ship (2018) in the East China Sea was hindcast simulated using the oil particle-tracing method. Sea-surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF), currents simulated from the Finite-Volume Community Ocean Model (FVCOM), and waves simulated from the Simulating WAves Nearshore (SWAN) were employed as background marine dynamics fields. In particular, the oil spill simulation was compared with the detection from Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) images. The validation of the SWAN-simulated significant wave height (SWH) against measurements from the Jason-2 altimeter showed a 0.58 m root mean square error (RMSE) with a 0.93 correlation (COR). Further, the sea-surface current was compared with that from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2), yielding a 0.08 m/s RMSE and a 0.71 COR. Under these circumstances, we think the model-simulated sea-surface currents and waves are reliable for this work. A hindcast simulation of the tracks of oil slicks spilled from the Sanchi shipwreck was conducted during the period of 14–17 January 2018. It was found that the general track of the simulated oil slicks was consistent with the observations from the collected GF-3 SAR images. However, the details from the GF-3 SAR images were more obvious. The spatial coverage of oil slicks between the SAR-detected and simulated results was about 1 km2. In summary, we conclude that combining numerical simulation and SAR remote sensing is a promising technique for real-time oil spill monitoring and the prediction of oil spreading.


Author(s):  
Ademola E. Ilesanmi ◽  
Taiwo O. Ilesanmi

AbstractImage denoising faces significant challenges, arising from the sources of noise. Specifically, Gaussian, impulse, salt, pepper, and speckle noise are complicated sources of noise in imaging. Convolutional neural network (CNN) has increasingly received attention in image denoising task. Several CNN methods for denoising images have been studied. These methods used different datasets for evaluation. In this paper, we offer an elaborate study on different CNN techniques used in image denoising. Different CNN methods for image denoising were categorized and analyzed. Popular datasets used for evaluating CNN image denoising methods were investigated. Several CNN image denoising papers were selected for review and analysis. Motivations and principles of CNN methods were outlined. Some state-of-the-arts CNN image denoising methods were depicted in graphical forms, while other methods were elaborately explained. We proposed a review of image denoising with CNN. Previous and recent papers on image denoising with CNN were selected. Potential challenges and directions for future research were equally fully explicated.


Sign in / Sign up

Export Citation Format

Share Document