scholarly journals Development of the Electromagnetic Calculation Software Package for a Synchronous Motor Based on the Field-Circuit Combination Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Feng Chen ◽  
Qingquan Gan ◽  
Boyi Yu

Nowadays, domestic motor manufacturers often use high-speed circuit and magnetic circuit parameters in engine models. In addition, the calculation accuracy is low and cannot fully meet the requirements of a modern engine design. The field-circuit combination algorithm is based on electric field analysis, which avoids many rough assumptions and empirical formulas; its calculations are more accurate and reliable than traditional algorithms. It is used to analyze and calculate the steady-state operating conditions and characteristics of motors, which can effectively improve the design level of China’s boss synchronous motors. This article mainly introduces software algorithms and auxiliary FDTD methods. In this article, we use the field-circuit coupling algorithm to develop an electromagnetic calculation software package for synchronous motors and establish a mathematical model for the potential field-circuit coupling algorithm. We use the cassette electromagnetic calculation program to solve the model, evaluate the synchronous motor, and use historical data to modify the model and improve the accuracy of the development-state evaluation of the electromagnetic calculation software package for the synchronous motor based on the motor electromagnetic circuit coupling algorithm. The experimental results of this article show that the field circuit combination algorithm increases the development of the electromagnetic calculation software package for synchronous motors by 55% and reduces the false alarm rate and false alarm rate. Finally, by comparing the phases of traditional algorithms, we analyzed the excitation circuit combination algorithm to calculate the parameters and performance of the synchronous motor.

2021 ◽  
Vol 346 ◽  
pp. 03067
Author(s):  
Alexander Romanov

In the transition to automated and automatic manufacturing an urgent problem is to increase the reliability of mobile robots (MR) and their drives, creation of devices to monitor the technical characteristics of MR, diagnose and predict the remaining resource. Inspite of the high relevance of the diagnosing MR drives problem, there are no generally accepted methodology for diagnosing MR drives, criteria for selecting methods, parameters and volumes of diagnostics at present. An unsolved problem, related to the diagnosis of MR drives and the prediction of their residual life remains, is the development of methods that allow to carry out of automatic complex multiparametric diagnostics and prediction of the residual life using artificial intelligence methods. Effective fault detection and diagnosis can improve the reliability of the MR drive and avoid costly maintenance. In this paper a fault detection scheme for synchronous motors with permanent magnets based on a fuzzy system is proposed. The sequence current components (positive and negative sequence currents) are used as fault indicators and are set as input to the fuzzy fault detector. The expediency of the proposed scheme for determining of various types of faults for a synchronous motor with permanent magnets under various operating conditions is simulated using the SimInTech software.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (1) ◽  
pp. 33-41
Author(s):  
YVON THARRAULT ◽  
MOULOUD AMAZOUZ

Recovery boilers play a key role in chemical pulp mills. Early detection of defects, such as water leaks, in a recovery boiler is critical to the prevention of explosions, which can occur when water reaches the molten smelt bed of the boiler. Early detection is difficult to achieve because of the complexity and the multitude of recovery boiler operating parameters. Multiple faults can occur in multiple components of the boiler simultaneously, and an efficient and robust fault isolation method is needed. In this paper, we present a new fault detection and isolation scheme for multiple faults. The proposed approach is based on principal component analysis (PCA), a popular fault detection technique. For fault detection, the Mahalanobis distance with an exponentially weighted moving average filter to reduce the false alarm rate is used. This filter is used to adapt the sensitivity of the fault detection scheme versus false alarm rate. For fault isolation, the reconstruction-based contribution is used. To avoid a combinatorial excess of faulty scenarios related to multiple faults, an iterative approach is used. This new method was validated using real data from a pulp and paper mill in Canada. The results demonstrate that the proposed method can effectively detect sensor faults and water leakage.


Author(s):  
Sherif S. Ishak ◽  
Haitham M. Al-Deek

Pattern recognition techniques such as artificial neural networks continue to offer potential solutions to many of the existing problems associated with freeway incident-detection algorithms. This study focuses on the application of Fuzzy ART neural networks to incident detection on freeways. Unlike back-propagation models, Fuzzy ART is capable of fast, stable learning of recognition categories. It is an incremental approach that has the potential for on-line implementation. Fuzzy ART is trained with traffic patterns that are represented by 30-s loop-detector data of occupancy, speed, or a combination of both. Traffic patterns observed at the incident time and location are mapped to a group of categories. Each incident category maps incidents with similar traffic pattern characteristics, which are affected by the type and severity of the incident and the prevailing traffic conditions. Detection rate and false alarm rate are used to measure the performance of the Fuzzy ART algorithm. To reduce the false alarm rate that results from occasional misclassification of traffic patterns, a persistence time period of 3 min was arbitrarily selected. The algorithm performance improves when the temporal size of traffic patterns increases from one to two 30-s periods for all traffic parameters. An interesting finding is that the speed patterns produced better results than did the occupancy patterns. However, when combined, occupancy–speed patterns produced the best results. When compared with California algorithms 7 and 8, the Fuzzy ART model produced better performance.


2008 ◽  
Author(s):  
Kenneth Ranney ◽  
Hiralal Khatri ◽  
Jerry Silvious ◽  
Kwok Tom ◽  
Romeo del Rosario

Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


Author(s):  
Mingming Fan ◽  
Shaoqing Tian ◽  
Kai Liu ◽  
Jiaxin Zhao ◽  
Yunsong Li

AbstractInfrared small target detection has been a challenging task due to the weak radiation intensity of targets and the complexity of the background. Traditional methods using hand-designed features are usually effective for specific background and have the problems of low detection rate and high false alarm rate in complex infrared scene. In order to fully exploit the features of infrared image, this paper proposes an infrared small target detection method based on region proposal and convolution neural network. Firstly, the small target intensity is enhanced according to the local intensity characteristics. Then, potential target regions are proposed by corner detection to ensure high detection rate of the method. Finally, the potential target regions are fed into the classifier based on convolutional neural network to eliminate the non-target regions, which can effectively suppress the complex background clutter. Extensive experiments demonstrate that the proposed method can effectively reduce the false alarm rate, and outperform other state-of-the-art methods in terms of subjective visual impression and quantitative evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document