scholarly journals Modeling and Simulation: A Study on Predicting the Outbreak of COVID-19 in Saudi Arabia

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ahmed Msmali ◽  
Mutum Zico ◽  
Idir Mechai ◽  
Abdullah Ahmadini

The novel coronavirus disease (COVID-19) has resulted in an ongoing pandemic affecting the health system and economy of more than 200 countries worldwide. Mathematical models are used to predict the biological and epidemiological tendencies of an epidemic and to develop methods for controlling it. In this work, we use a mathematical model perspective to study the role of behavior change in slowing the spread of COVID-19 in Saudi Arabia. The real-time updated data from March 2, 2020, to January 8, 2021, were collected from the Saudi Ministry of Health, aiming to provide dynamic behaviors of the epidemic in Saudi Arabia. During this period, 363,692 people were infected, resulting in 6293 deaths, with a mortality rate of 1.73%. There was a weak positive relationship between the spread of infection and mortality R 2 = 0.459 . We used the susceptible-exposed-infection-recovered (SEIR) model, a logistic growth model, with a special focus on the exposed, infected, and recovered individuals to simulate the final phase of the outbreak. The results indicate that social distancing, hygienic conditions, and travel limitations are crucial measures to prevent further spread of the epidemic.

2021 ◽  
Author(s):  
Ahmed Msmali ◽  
Zico Mutum ◽  
Idir Mechai ◽  
Abdullah Ahmadini

AbstractThe novel coronavirus (Covid-19) infection has resulted in an ongoing pandemic affecting health system and economy of more than 200 countries around the world. Mathematical models are used to predict the biological and epidemiological trends of an epidemic and develop methods for controlling it. In this work, we use mathematical model perspective to study the role of behavior change in slowing the spread of the COVID-19 disease in Saudi Arabia. The real-time updated data from 1st May 2020 to 8th January 2021 is collected from Saudi Ministry of Health, aiming to provide dynamic behaviors of the pandemic in Saudi Arabia. During this period, it has infected 297,205 people, resulting in 6124 deaths with the mortality rate 2.06 %. There is weak positive relationship between the spread of the infection and mortality (R2 =0.412). We use Susceptible-Exposed-Infection-Recovered (SEIR) mode, the logistic growth model and with special focus on the exposed, infection and recovery individuals to simulate the final phase of the outbreak. The results indicate that social distancing, good hygienic conditions, and travel limitation are the crucial measures to prevent further spreading of the epidemic.


2021 ◽  
Author(s):  
Mohamed LOUNIS ◽  
Babu Malavika

Abstract The novel Coronavirus respiratory disease 2019 (COVID-19) is still expanding through the world since it started in Wuhan (China) on December 2019 reporting a number of more than 84.4 millions cases and 1.8 millions deaths on January 3rd 2021.In this work and to forecast the COVID-19 cases in Algeria, we used two models: the logistic growth model and the polynomial regression model using data of COVID-19 cases reported by the Algerian ministry of health from February 25th to December 2nd, 2020. Results showed that the polynomial regression model fitted better the data of COVID-19 in Algeria the Logistic model. The first model estimated the number of cases on January, 19th 2021 at 387673 cases. This model could help the Algerian authorities in the fighting against this disease.


2021 ◽  
Author(s):  
Miguel López ◽  
Alberto Peinado ◽  
Andrés Ortiz

AbstractSince the first case reported of SARS-CoV-2 the end of December 2019 in China, the number of cases quickly climbed following an exponential growth trend, demonstrating that a global pandemic is possible. As of December 3, 2020, the total number of cases reported are around 65,527,000 contagions worldwide, and 1,524,000 deaths affecting 218 countries and territories. In this scenario, Spain is one of the countries that has suffered in a hard way, the ongoing epidemic caused by the novel coronavirus SARS-CoV-2, namely COVID-19 disease. In this paper, we present the utilization of phenomenological epidemic models to characterize the two first outbreak waves of COVID-19 in Spain. The study is driven using a two-step phenomenological epidemic approach. First, we use a simple generalized growth model to fit the main parameters at the early epidemic phase; later, we apply our previous finding over a logistic growth model to that characterize both waves completely. The results show that even in the absence of accurate data series, it is possible to characterize the curves of case incidence, and even construct short-term forecast in the near time horizon.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253004
Author(s):  
Miguel López ◽  
Alberto Peinado ◽  
Andrés Ortiz

Since the first case reported of SARS-CoV-2 the end of December 2019 in China, the number of cases quickly climbed following an exponential growth trend, demonstrating that a global pandemic is possible. As of December 3, 2020, the total number of cases reported are around 65,527,000 contagions worldwide, and 1,524,000 deaths affecting 218 countries and territories. In this scenario, Spain is one of the countries that has suffered in a hard way, the ongoing epidemic caused by the novel coronavirus SARS-CoV-2, namely COVID-19 disease. In this paper, we present the utilization of phenomenological epidemic models to characterize the two first outbreak waves of COVID-19 in Spain. The study is driven using a two-step phenomenological epidemic approach. First, we use a simple generalized growth model to fit the main parameters at the early epidemic phase; later, we apply our previous finding over a logistic growth model to that characterize both waves completely. The results show that even in the absence of accurate data series, it is possible to characterize the curves of case incidence, and construct a short-term forecast of 60 days in the near time horizon, in relation to the expected total duration of the pandemic.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 977-982
Author(s):  
Mohamed J. Saadh ◽  
Bashar Haj Rashid M ◽  
Roa’a Matar ◽  
Sajeda Riyad Aldibs ◽  
Hala Sbaih ◽  
...  

SARS-COV2 virus causes Coronavirus disease (COVID-19) and represents the causative agent of a potentially fatal disease that is of great global public health concern. The novel coronavirus (2019) was discovered in 2019 in Wuhan, the market of the wet animal, China with viral pneumonia cases and is life-threatening. Today, WHO announces COVID-19 outbreak as a pandemic. COVID-19 is likely to be zoonotic. It is transmitted from bats as intermediary animals to human. Also, the virus is transmitted from human to human who is in close contact with others. The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is nearly supportive; the role of antiviral agents is yet to be established. The SARS-COV2 virus spreads faster than its two ancestors, the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. In this article, we aimed to summarize the transmission, symptoms, pathogenesis, diagnosis, treatment, and vaccine to control the spread of this fatal disease.


2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


2017 ◽  
Author(s):  
Wang Jin ◽  
Scott W McCue ◽  
Matthew J Simpson

AbstractCell proliferation is the most important cellular-level mechanism responsible for regulating cell population dynamics in living tissues. Modern experimental procedures show that the proliferation rates of individual cells can vary significantly within the same cell line. However, in the mathematical biology literature, cell proliferation is typically modelled using a classical logistic equation which neglects variations in the proliferation rate. In this work, we consider a discrete mathematical model of cell migration and cell proliferation, modulated by volume exclusion (crowding) effects, with variable rates of proliferation across the total population. We refer to this variability as heterogeneity. Constructing the continuum limit of the discrete model leads to a generalisation of the classical logistic growth model. Comparing numerical solutions of the model to averaged data from discrete simulations shows that the new model captures the key features of the discrete process. Applying the extended logistic model to simulate a proliferation assay using rates from recent experimental literature shows that neglecting the role of heterogeneity can, at times, lead to misleading results.


2020 ◽  
Author(s):  
Xingyi Guo ◽  
Zhishan Chen ◽  
Yumin Xia ◽  
Weiqiang Lin ◽  
Hongzhi Li

Abstract Background: The outbreak of coronavirus disease (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through its surface spike glycoprotein (S-protein) recognition on the receptor Angiotensin-converting enzyme 2 (ACE2) in humans. However, it remains unclear how genetic variations in ACE2 may affect its function and structure, and consequently alter the recognition by SARS-CoV-2. Methods: We have systemically characterized missense variants in the gene ACE2 using data from the Genome Aggregation Database (gnomAD; N = 141,456). To investigate the putative deleterious role of missense variants, six existing functional prediction tools were applied to evaluate their impact. We further analyzed the structural flexibility of ACE2 and its protein-protein interface with the S-protein of SARS-CoV-2 using our developed Legion Interfaces Analysis (LiAn) program.Results: Here, we characterized a total of 12 ACE2 putative deleterious missense variants. Of those 12 variants, we further showed that p.His378Arg could directly weaken the binding of catalytic metal atom to decrease ACE2 activity and p.Ser19Pro could distort the most important helix to the S-protein. Another seven missense variants may affect secondary structures (i.e. p.Gly211Arg; p.Asp206Gly; p.Arg219Cys; p.Arg219His, p.Lys341Arg, p.Ile468Val, and p.Ser547Cys), whereas p.Ile468Val with AF = 0.01 is only present in Asian.Conclusions: We provide strong evidence of putative deleterious missense variants in ACE2 that are present in specific populations, which could disrupt the function and structure of ACE2. These findings provide novel insight into the genetic variation in ACE2 which may affect the SARS-CoV-2 recognition and infection, and COVID-19 susceptibility and treatment.


Author(s):  
Dabiah Alboaneen ◽  
Bernardi Pranggono ◽  
Dhahi Alshammari ◽  
Nourah Alqahtani ◽  
Raja Alyaffer

The coronavirus diseases 2019 (COVID-19) outbreak continues to spread rapidly across the world and has been declared as pandemic by World Health Organization (WHO). Saudi Arabia was among the countries that was affected by the deadly and contagious virus. Using a real-time data from 2 March 2020 to 15 May 2020 collected from Saudi Ministry of Health, we aimed to give a local prediction of the epidemic in Saudi Arabia. We used two models: the Logistic Growth and the Susceptible-Infected-Recovered for real-time forecasting the confirmed cases of COVID-19 across Saudi Arabia. Our models predicted that the epidemics of COVID-19 will have total cases of 69,000 to 79,000 cases. The simulations also predicted that the outbreak will entering the final-phase by end of June 2020.


Sign in / Sign up

Export Citation Format

Share Document