scholarly journals Next-Generation Sequencing Identifies Pathogenic Variants in HGF, POU3F4, TECTA, and MYO7A in Consanguineous Pakistani Deaf Families

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xueshuang Mei ◽  
Yaqi Zhou ◽  
Muhammad Amjad ◽  
Weiqiang Yang ◽  
Rufei Zhu ◽  
...  

Background. Approximately 70% of congenital deafness is attributable to genetic causes. Incidence of congenital deafness is known to be higher in families with consanguineous marriage. In this study, we investigated the genetic causes in three consanguineous Pakistani families segregating with prelingual, severe-to-profound deafness. Results. Through targeted next-generation sequencing of 414 genes known to be associated with deafness, homozygous variants c.536del (p. Leu180Serfs ∗ 20) in TECTA, c.3719 G>A (p. Arg1240Gln) in MYO7A, and c.482+1986_1988del in HGF were identified as the pathogenic causes of enrolled families. Interestingly, in one large consanguineous family, an additional c.706G>A (p. Glu236Lys) variant in the X-linked POU3F4 gene was also identified in multiple affected family members causing deafness. Genotype-phenotype cosegregation was confirmed in all participating family members by Sanger sequencing. Conclusions. Our results showed that the genetic causes of deafness are highly heterogeneous. Even within a single family, the affected members with apparently indistinguishable clinical phenotypes may have different pathogenic variants.

2017 ◽  
Vol 27 (6) ◽  
pp. 791-796 ◽  
Author(s):  
Jianping Xiao ◽  
Xueqin Guo ◽  
Yong Wang ◽  
Mingkun Shao ◽  
Xiaoming Wei ◽  
...  

Purpose To identify disease-causing mutations in a Chinese patient with retinitis pigmentosa (RP). Methods A detailed clinical examination was performed on the proband. Targeted next-generation sequencing (NGS) combined with bioinformatics analysis was performed on the proband to detect candidate disease-causing mutations. Sanger sequencing was performed on all subjects to confirm the candidate mutations and assess cosegregation within the family. Results Clinical examinations of the proband showed typical characteristics of RP. Three candidate heterozygous mutations in 3 genes associated with RP were detected in the proband by targeted NGS. The 3 mutations were confirmed by Sanger sequencing and the deletion (c.357_358delAA) in PRPF31 was shown to cosegregate with RP phenotype in 7 affected family members, but not in 3 unaffected family members. Conclusions The deletion (c.357_358delAA) in PRPF31 was the disease-causing mutation for the proband and his affected family members with RP. To our knowledge, this is the second report of the deletion and the first report of the other 2 mutations in the Chinese population. Targeted NGS combined with bioinformatics analysis proved to be an effective molecular diagnostic tool for RP.


2018 ◽  
Vol 31 (12) ◽  
pp. 1295-1304 ◽  
Author(s):  
Taha R. Özdemir ◽  
Özgür Kırbıyık ◽  
Bumin N. Dündar ◽  
Ayhan Abacı ◽  
Özge Ö. Kaya ◽  
...  

Abstract Background Maturity-onset diabetes of the young (MODY) is a common form of monogenic diabetes. Fourteen genes have been identified, each leading to cause a different type of MODY. The aims of this study were to reveal both known and novel variants in MODY genes in patients with MODY using targeted next generation sequencing (NGS) and to present the genotype-phenotype correlations. Methods Mutation analysis of MODY genes (GCK, HNF1A, HNF4A, HNF1B, ABCC8, INS and KCNJ11) was performed using targeted NGS in 106 patients with a clinical diagnosis of MODY. The variants were evaluated according to American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines recommendations. Results A total of 18 (17%) variants were revealed among all patients. Seven variants in GCK, six in HNF4A, four in HNF1A and one in ABCC8 genes were found. Eight of them were previously published and 10 of them were assessed as novel pathogenic or likely pathogenic variants. Conclusions While the most frequent mutations are found in the HNF1A gene in the literature, most of the variants were found in the GCK gene in our patient group using the NGS method, which allows simultaneous analysis of multiple genes in a single panel.


2020 ◽  
Vol 30 (12) ◽  
pp. 1910-1916
Author(s):  
Rania K. Darwish ◽  
Alireza Haghighi ◽  
Zeinab S. Seliem ◽  
Sonia A. El-Saiedi ◽  
Nora H. Radwan ◽  
...  

AbstractPaediatric cardiomyopathy is a progressive and often lethal disorder and the most common cause of heart failure in children. Despite their severe outcomes, their genetic etiology is still poorly characterised. The current study aimed at uncovering the genetic background of idiopathic primary hypertrophic cardiomyopathy in a cohort of Egyptian children using targeted next-generation sequencing. The study included 24 patients (15 males and 9 females) presented to the cardiomyopathy clinic of Cairo University Children’s Hospital with a median age of 2.75 (0.5–14) years. Consanguinity was positive in 62.5% of patients. A family history of hypertrophic cardiomyopathy was present in 20.8% of patients. Ten rare variants were detected in eight patients; two pathogenic variants (8.3%) in MBPC3 and MYH7, and eight variants of uncertain significance in MYBPC3, TTN, VCL, MYL2, CSRP3, and RBM20.Here, we report on the first national study in Egypt that analysed sarcomeric and non-sarcomeric variants in a cohort of idiopathic paediatric hypertrophic cardiomyopathy patients using next-generation sequencing. The current pilot study suggests that paediatric hypertrophic cardiomyopathy in Egypt might have a particular genetic background, especially with the high burden of consanguinity. Including the genetic testing in the routine diagnostic service is important for a better understanding of the pathophysiology of the disease, proper patient management, and at-risk detection. Genome-wide tests (whole exome/genome sequencing) might be better than the targeted sequencing approach to test primary hypertrophic cardiomyopathy patients in addition to its ability for the identification of novel genetic causes.


2021 ◽  
Vol 8 (1) ◽  
pp. 19-24
Author(s):  
Sinem Yalcintepe ◽  
Hakan Gurkan ◽  
Fatma Nur Korkmaz ◽  
Selma Demir ◽  
Engin Atli ◽  
...  

The aim of this study was to evaluate germline variant frequencies of pheochromocytoma and paraganglioma targeted susceptibility genes with next-generation sequencing method. Germline DNA from 75 cases were evaluated with targeted next-generation sequencing on an Illumina NextSeq550 instrument. KIF1B, RET, SDHB, SDHD, TMEM127, and VHL genes were included in the study, and Sanger sequencing was used for verifying the variants. The pathogenic/likely pathogenic variants were in the VHL, RET, SDHB, and SDHD genes, and the diagnosis rate was 24% in this study. Three different novel pathogenic variants were determined in five cases. This is the first study from Turkey, evaluating germline susceptibility genes of pheochromocytoma and paraganglioma with a detection rate of 24% and three novel variants. All patients with pheochromocytoma and paraganglioma need clinical genetic testing with expanded targeted gene panels for higher diagnosis rates.


2020 ◽  
Author(s):  
Xiaoping Lin ◽  
Yuankun Ma ◽  
Zhejun Cai ◽  
Qiyuan Wang ◽  
Lihua Wang ◽  
...  

Abstract Background: Arrhythmogenic cardiomyopathy (AC) is one of the leading causes for sudden cardiac death (SCD). Recent studies have identified mutations in cardiac desmosomes as key players in the pathogenesis of AC. However, the specific etiology in individual families remains largely unknown. Methods: A 4-generation family presenting with syncope, lethal ventricular arrhythmia and SCD was recruited. Targeted next generation sequencing (NGS) was performed and validated by Sanger sequencing. Plasmids containing the mutation and wild type (WT) were constructed, real-time PCR, western-blot and immunofluorescence were performed to detect the functional change due to the mutation. Results: The proband, a 56-year-old female, presented with recurrent palpitations and syncope. An ICD was implanted due to her family history of SCD/ aborted SCD. NGS revealed a novel heterozygous frame-shift variant ( c.832delG ) in Desmoplakin ( DSP ) among 5 family members. The variant led to frame-shift and premature termination, producing a truncated protein. Cardiac magnetic resonance (CMR) of the family members carrying the same variant shown myocardium thinning and fatty infiltration in the right ventricular, positive bi-ventricular late gadolinium enhancement and severe RV dysfunction, fulfilling the diagnostic criteria of AC. HEK293T cells transfected with mutant expressed truncated DSP mRNA and protein, upregulation of nuclear junction plakoglobin ( JUP ) and downregulation of β-catenin, when compared with WT. Conclusion: We infer that the novel c.832delG variant in DSP was associated with AC in this family, likely through Wnt/β-catenin signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoyu Yu ◽  
Yun Lin ◽  
Hao Wu

Hearing loss is the most common sensory deficit in humans. Identifying the genetic cause and genotype-phenotype correlation of hearing loss is sometimes challenging due to extensive clinical and genetic heterogeneity. In this study, we applied targeted next-generation sequencing (NGS) to resolve the genetic etiology of hearing loss in a Chinese Han family with multiple affected family members. Targeted sequencing of 415 deafness-related genes identified the heterozygous c.481C>T (p.R161C) mutation in SOX10 and the homozygous c.235delC (p.L79Cfs∗3) mutation in GJB2 as separate pathogenic mutations in distinct affected family members. The SOX10 c.481C>T (p.R161C) mutation has been previously reported in a Caucasian patient with Kallmann syndrome that features congenital hypogonadotropic hypogonadism with anosmia. In contrast, family members carrying the same p.R161C mutation in this study had variable Waardenburg syndrome-associated phenotypes (hearing loss and/or hair hypopigmentation) without olfactory or reproductive anomalies. Our results highlight the importance of applying comprehensive diagnostic approaches such as NGS in molecular diagnosis of hearing loss and show that the p.R161C mutation in SOX10 may be associated with a wide range of variable clinical manifestations.


2020 ◽  
Vol 105 (8) ◽  
pp. e2825-e2833 ◽  
Author(s):  
Takeshi Yamaguchi ◽  
Akie Nakamura ◽  
Kanako Nakayama ◽  
Nozomi Hishimura ◽  
Shuntaro Morikawa ◽  
...  

Abstract Purpose Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder; however, its molecular etiology remains poorly understood. Methods We performed genetic analysis of 24 causative genes using next-generation sequencing in 167 CH cases, comprising 57 dyshormonogenesis (DH), 32 dysgenesis (TD) and 78 undiagnosed. The pathogenicity of variants was assessed by the American College of Medical Genetics guidelines, inheritance pattern, and published evidence. Furthermore, we compared the oligogenic groups and monogenic groups to examine the correlation between variant dosage and severity. Results We identified variants in 66.5% cases (111/167) and 15 genes, DUOX2, TSHR, PAX8, TG, TPO, DUOXA2, JAG1, GLIS3, DUOX1, IYD, SLC26A4, SLC5A5, SECISBP2, DIO1, and DIO3. Biallelic variants were identified in 12.6% (21/167), oligogenic in 18.0% (30/167), and monogenic in 35.9% (60/167); however, 68.5% of variants were classified as variant of unknown significance (VUS). Further examinations showed that 3 out of 32 cases with TD (9.4%) had pathogenic variants (2 of TSHR and 1 of TPO), and 8 out of 57 cases with DH (14.0%) (7 of DUOX2, 1 of TG) had pathogenic variants. In addition, TSH levels at the first visit were significantly higher in the oligogenic group than in the monogenic group. Conclusions The detection rate of pathogenic variants in Japanese CH was similar to that previously reported. Moreover, oligogenic cases were likely to be more severe than monogenic cases, suggesting that CH may exhibit a gene dosage effect. Further analysis of VUS pathogenicity is required to clarify the molecular basis of CH.


Sign in / Sign up

Export Citation Format

Share Document