scholarly journals Classification and Recognition of Fish Farming by Extraction New Features to Control the Economic Aquatic Product

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yizhuo Zhang ◽  
Fengwei Zhang ◽  
Jinxiang Cheng ◽  
Huan Zhao

With the rapid emergence of the technology of deep learning (DL), it was successfully used in different fields such as the aquatic product. New opportunities in addition to challenges can be created according to this change for helping data processing in the smart fish farm. This study focuses on deep learning applications and how to support different activities in aquatic like identification of the fish, species classification, feeding decision, behavior analysis, estimation size, and prediction of water quality. Power and performance of computing with the analyzed given data are applied in the proposed DL method within fish farming. Results of the proposed method show the significance of contributions in deep learning and how automatic features are extracted. Still, there is a big challenge of using deep learning in an era of artificial intelligence. Training of the proposed method used a large number of labeled images got from the Fish4Knowledge dataset. The proposed method based on suitable feature extracted from the fish achieved good results in terms of recognition rate and accuracy.

Author(s):  
Tarik Alafif ◽  
Abdul Muneeim Tehame ◽  
Saleh Bajaba ◽  
Ahmed Barnawi ◽  
Saad Zia

With many successful stories, machine learning (ML) and deep learning (DL) have been widely used in our everyday lives in a number of ways. They have also been instrumental in tackling the outbreak of Coronavirus (COVID-19), which has been happening around the world. The SARS-CoV-2 virus-induced COVID-19 epidemic has spread rapidly across the world, leading to international outbreaks. The COVID-19 fight to curb the spread of the disease involves most states, companies, and scientific research institutions. In this research, we look at the Artificial Intelligence (AI)-based ML and DL methods for COVID-19 diagnosis and treatment. Furthermore, in the battle against COVID-19, we summarize the AI-based ML and DL methods and the available datasets, tools, and performance. This survey offers a detailed overview of the existing state-of-the-art methodologies for ML and DL researchers and the wider health community with descriptions of how ML and DL and data can improve the status of COVID-19, and more studies in order to avoid the outbreak of COVID-19. Details of challenges and future directions are also provided.


Author(s):  
Muhammad Sani Gaya ◽  
Sani Isah Abba ◽  
Aliyu Muhammad Abdu ◽  
Abubakar Ibrahim Tukur ◽  
Mubarak Auwal Saleh ◽  
...  

<span lang="EN-US">Water quality index is a measure of water quality at a certain location and over a period of time. High value indicates that the water is unsafe for drinking and inadequate in quality to meet the designated uses. Most of the classical models are unreliable producing unpromising forecasting results. This study presents Artificial Intelligence (AI) techniques and a Multi Linear Regression (MLR) as the classical linear model for estimating the Water Quality Index (WQI) of Palla station of Yamuna river, India. Full-scale data of the river were used in validating the models. Performance measures such as Mean Square Error (MSE), Root Mean Squared Error (RMSE) and Determination Coefficient (DC) were utilized in evaluating the accuracy and performance of the models. The obtained result depicted the superiority of AI models over the MLR model. The results also indicated that, the best model of both ANN and ANFIS proved high improvement in performance accuracy over MLR up to 10% in the verification phase. The difference between ANN and ANFIS accuracy is negligible due to a slight increment in performance accuracy indicating that both ANN and ANFIS could serve as reliable models for the estimation of WQI</span>.


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Pathology ◽  
2021 ◽  
Vol 53 ◽  
pp. S6
Author(s):  
Jack Garland ◽  
Mindy Hu ◽  
Kilak Kesha ◽  
Charley Glenn ◽  
Michael Duffy ◽  
...  

2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
Vol 13 (15) ◽  
pp. 2883
Author(s):  
Gwanggil Jeon

Remote sensing is a fundamental tool for comprehending the earth and supporting human–earth communications [...]


Sign in / Sign up

Export Citation Format

Share Document