scholarly journals Qiyusanlong Formula Induces Autophagy in Non-Small-Cell Lung Cancer Cells and Xenografts through the mTOR Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yating Gao ◽  
Xinheng Wang ◽  
Qinjun Yang ◽  
Xiaole Wang ◽  
Xingxing Zhang ◽  
...  

Objective. Qiyusanlong (QYSL) formula has been used in the clinic for more than 20 years and has been proved to have pronounced efficacy in the treatment of non-small-cell lung cancer (NSCLC). This work aims to evaluate the molecular mechanism of QYSL formula action on NSCLC, specifically in relation to autophagy induction. Methods. In vitro, CCK-8 was used to detect the effect of QYSL serum on cell viability in A549 cells. In vivo, A549 cells were implanted subcutaneously in nude mice to establish a xenograft model. TUNEL staining was used to measure cell apoptosis and TEM to observe the autophagy-related morphological changes in vitro and in vivo. Western blotting, RT-qPCR, and immunofluorescence were used to measure autophagy-related proteins. In addition, rapamycin (an inhibitor of mTOR and inducer of autophagy) and MHY1485 (an activator of mTOR and inhibitor of autophagy) were used to determine whether QYSL-induced autophagy was regulated by the mTOR pathway. Results. QYSL serum inhibited the cell viability of A549 cells in a concentration‐dependent manner. In vivo, the QYSL formula inhibited xenograft growth. The QYSL formula promoted apoptosis in A549 cells and induced autophagosome formation in vitro and in vivo. In addition, the QYSL formula downregulated the expression of mTOR and p62, while it upregulated the expression of ATG-7 and Beclin-1 and increased the LC3-II/LC3-I ratio. QYSL serum inhibited p-mTOR in a similar manner to rapamycin while reducing the activating effects of MHY1485 on p-mTOR. Conclusion. The QYSL formula has anti-lung cancer effects and promotes autophagy through the mTOR signaling pathway.

2021 ◽  
Vol 9 ◽  
Author(s):  
Danruo Fang ◽  
Hansong Jin ◽  
Xiulin Huang ◽  
Yongxin Shi ◽  
Zeyu Liu ◽  
...  

Non-small cell lung cancer (NSCLC) is considered to be a principal cause of cancer death across the world, and nanomedicine has provided promising alternatives for the treatment of NSCLC in recent years. Photothermal therapy (PTT) and chemodynamic therapy (CDT) have represented novel therapeutic modalities for cancer treatment with excellent performance. The purpose of this research was to evaluate the effects of PPy@Fe3O4 nanoparticles (NPs) on inhibiting growth and metastasis of NSCLC by combination of PTT and CDT. In this study, we synthesized PPy@Fe3O4 NPs through a very facile electrostatic absorption method. And we detected reactive oxygen species production, cell apoptosis, migration and protein expression in different groups of A549 cells and established xenograft models to evaluate the effects of PPy@Fe3O4 NPs for inhibiting the growth of NSCLC. The results showed that the PPy@Fe3O4 NPs had negligible cytotoxicity and could efficiently inhibit the cell growth and metastasis of NSCLC in vitro. In addition, the PPy@Fe3O4 NPs decreased tumor volume and growth in vivo and endowed their excellent MRI capability of observing the location and size of tumor. To sum up, our study displayed that the PPy@Fe3O4 NPs had significant synergistic effects of PTT and CDT, and had good biocompatibility and safety in vivo and in vitro. The PPy@Fe3O4 NPs may be an effective drug platform for the treatment of NSCLC.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 627 ◽  
Author(s):  
Yanhua Fan ◽  
Huaiwei Ding ◽  
Donghwa Kim ◽  
Duc-Hiep Bach ◽  
Ji-Young Hong ◽  
...  

Aberrant activation of hepatocyte growth factor (HGF)/c-Met signaling pathway caused by gene amplification or mutation plays an important role in tumorigenesis. Therefore, c-Met is considered as an attractive target for cancer therapy and c-Met inhibitors have been developed with great interests. However, cancers treated with c-Met inhibitors inevitably develop resistance commonly caused by the activation of PI3K/Akt signal transduction pathway. Therefore, the combination of c-Met and PI3Kα inhibitors showed synergistic activities, especially, in c-Met hyperactivated and PIK3CA-mutated cells. In our previous study, we rationally designed and synthesized DFX117(6-(5-(2,4-difluorophenylsulfonamido)-6-methoxypyridin-3-yl)-N-(2-morpholinoethyl) imidazo[1,2-a]pyridine-3-carboxamide) as a novel PI3Kα selective inhibitor. Herein, the antitumor activity and underlying mechanisms of DFX117 against non-small cell lung cancer (NSCLC) cells were evaluated in both in vitro and in vivo animal models. Concurrent targeted c-Met and PI3Kα by DFX117 dose-dependent inhibited the cell growth of H1975 cells (PIK3CA mutation and c-Met amplification) and A549 cells (KRAS mutation). DFX117 subsequently induced G0/G1 cell cycle arrest and apoptosis. These data highlight the significant potential of DFX117 as a feasible and efficacious agent for the treatment of NSCLC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Zhou ◽  
Mingming Xu ◽  
Zhipeng Wang ◽  
Mingjun Yang

AbstractAs an efficient drug carrier, exosome has been widely used in the delivery of genetic drugs, chemotherapeutic drugs, and anti-inflammatory drugs. As a genetic drug carrier, exosomes are beneficial to improve transfection efficiency and weaken side effects at the same time. Here, we use genetic engineering to prepare engineered exosomes (miR-449a Exo) that can actively deliver miR-449a. It was verified that miR-449a Exo had good homology targeting capacity and was specifically taken up by A549 cells. Moreover, miR-449a Exo had high delivery efficiency of miR-449a in vitro and in vivo. We demonstrated that miR-449a Exo effectively inhibited the proliferation of A549 cells and promoted their apoptosis. In addition, miR-449a Exo was found to control the progression of mouse tumors and prolong their survival in vivo. Our research provides new ideas for exosomes to efficiently and actively load gene drugs, and finds promising methods for the treatment of non-small cell lung cancer.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Fu-Gang Duan ◽  
Mei-Fang Wang ◽  
Ya-Bing Cao ◽  
Dan Li ◽  
Run-Ze Li ◽  
...  

Abstract MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3′-untranslated region (3′UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4136
Author(s):  
Hui Yang ◽  
Jasmine Heyer ◽  
Hui Zhao ◽  
Shengxian Liang ◽  
Rui Guo ◽  
...  

(1) Background: Cathepsin K has been found overexpressed in several malignant tumors. However, there is little information regarding the involvement of Cathepsin K in non-small cell lung cancer (NSCLC). (2) Methods: Cathepsin K expression was tested in human NSCLC cell lines A549 and human embryo lung fibroblast MRC-5 cells using Western blot and immunofluorescence assay. Cathepsin K was transiently overexpressed or knocked down using transfection with a recombinant plasmid and siRNA, respectively, to test the effects on cell proliferation, migration, invasion, and on the mammalian target of rapamycin (mTOR) signaling pathway. (3) Results: Expression of Cathepsin K was increased significantly in A549 cells and diffused within the cytoplasm compared to the MRC-5 cells used as control. Cathepsin K overexpression promoted the proliferation, migration, and invasion of A549 cells, accompanied by mTOR activation. Cathepsin K knockdown reversed the above malignant behavior and inhibited the mTOR signaling activation, suggesting that Cathepsin K may promote the progression of NSCLC by activating the mTOR signaling pathway. (4) Conclusion: Cathepsin K may potentially represent a viable drug target for NSCLC treatment.


2019 ◽  
Vol 316 (5) ◽  
pp. L918-L933 ◽  
Author(s):  
Li-Ming Gao ◽  
Yue Zheng ◽  
Ping Wang ◽  
Lei Zheng ◽  
Wen-Li Zhang ◽  
...  

The involvement of several microRNAs (miRs) in the initiation and development of tumors through the suppression of the target gene expression has been highlighted. The aberrant expression of miR-181d-5p and cyclin-dependent kinase inhibitor 3 (CDKN3) in non-small-cell lung cancer (NSCLC) was then screened by microarray analysis. In the present study, we performed a series of in vivo and in vitro experiments for the purpose of investigating their roles in NSCLC and the underlying mechanism. There was a high expression of CDKN3, whereas miR-181d-5p was downregulated in NSCLC. Quantitative RT-PCR, Western blot analysis, and dual-luciferase reporter gene assay further identified that CDKN3 could be negatively regulated by miR-181d-5p. Moreover, the upregulation of miR-181d-5p or silencing of CDKN3 could inactivate the Akt signaling pathway. A549 with the lowest miR-181d-5p and H1975 with the highest CDKN3 among the five NSCLC cell lines (H1299, A549, H1975, NCI-H157, and GLC-82) were adopted for in vitro experiments, in which expression of miR-181d-5p and CDKN3 was altered by transfection of miR-181d-5p mimic/inhibitor or siRNA-targeting CDKN3. Afterwards, cell proliferation, apoptosis, invasion, migration, and angiogenesis, as well as epithelial-mesenchymal transition (EMT), were evaluated, and tumorigenicity was assessed. In addition, an elevation in miR-181d-5p or depletion in CDKN3 led to significant reductions in proliferation, invasion, migration, angiogenesis, EMT, and tumorigenicity of NSCLC cells, coupling with increased cell apoptosis. In conclusion, this study highlights the tumor-suppressive effects of miR-181d-5p on NSCLC via Akt signaling pathway inactivation by suppressing CDKN3, thus providing a promising therapeutic strategy for the treatment of NSCLC.


Sign in / Sign up

Export Citation Format

Share Document