scholarly journals Metabolomic Analysis of the Urine from Rats with Collagen-Induced Arthritis with the Effective Part of Caulophyllum robustum Maxim

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shaowa Lü ◽  
Mingtao Zhu ◽  
Qiaoxin Guo ◽  
Dan Xu ◽  
Yuyan Guo ◽  
...  

Rheumatoid arthritis (RA) is a chronic autoimmune disease with high incidence and high disability and recurrence rates. Caulophyllum robustum Maxim (C. robustum) is a traditional Chinese medicine (TCM) with main effective parts (CRME) commonly used for RA treatment. To explore the mechanism of CRME in RA, we used metabolomics to investigate the effect of CRME intervention on urine metabolism in rats with collagen-induced arthritis (CIA). CIA rats were randomly divided into normal control, CIA model, and CRME groups. A metabolomics approach, using Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry, was developed to perform urinary metabolic profiling. Differential metabolites were identified by comparing the CIA model and CRME groups. Preliminarily, 56 significant differential metabolites were identified in urine, and 20 metabolic pathways were disturbed by the CIA. The amount of 16 different metabolites changed in urine after CRME intervention. The production of these metabolites involves tryptophan, tyrosine, energy, cholesterol, and vitamin metabolism. CRME has anti-inflammatory and immunosuppressive effects in CIA model rats. By examining the endogenous metabolite levels, we identified potential CRME targets and pathways involved in the treatment of RA. The results of our metabolic studies indicate that CRME regulates amino acid, vitamin, energy, and lipid metabolism pathways to treat RA and may provide a new explanation for the anti-RA mechanism of CRME.

Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 161 ◽  
Author(s):  
Ruinan Yang ◽  
Ligang Deng ◽  
Liangxiao Zhang ◽  
Xiaofeng Yue ◽  
Jin Mao ◽  
...  

Rapeseed is an important oilseed with proper fatty acid composition and abundant bioactive components. Canada and China are the two major rapeseed-producing countries all over the world. Meanwhile, Canada and Mongolia are major importers of rapeseed due to the great demand for rapeseed in China. To investigate the metabolites in rapeseeds from three countries, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics was employed to analyze rapeseeds from China, Canada, and Mongolia. As results, 67, 53, and 68 metabolites showed significant differences between Chinese and Canadian, Chinese and Mongolian, and Canadian and Mongolian rapeseeds, respectively. Differential metabolites were mainly distributed in the metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. Among the differential metabolites, contents of sinapate and sinapine were higher in Chinese rapeseeds, while the contents of brassicasterol, stigmasterol, and campestanol were higher in Canadian rapeseeds. These findings might provide insight into the metabolic characteristics of rapeseeds from three countries to guide processing and consumption of the products of rapeseed.


2018 ◽  
Vol 5 (10) ◽  
pp. 180759
Author(s):  
L. J. Zhu ◽  
S. S. Sun ◽  
Y. X. Hu ◽  
Y. F. Liu

To explore metabolism mechanism of paeoniflorin in the liver and further understand intact metabolism process of paeoniflorin, a rapid, convenient and effective assay is described using ultra-performance liquid chromatography coupled with hybrid quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). The strategy was confirmed in the following primary processes: firstly, different concentration of paeoniflorin, rat liver microsomes, coenzymes and different incubated conditions were optimized to build a biotransformation model of rat liver microsomes in vitro by high performance liquid chromatography with diode array detection (HPLC-DAD); secondly, the metabolites of paeoniflorin in rat liver microsomes were detected and screened using UPLC-Q-TOF-MS/MS by comparing the total ion chromatogram (TIC) of the experimental group with those of control groups; finally, the molecular formulae and corresponding chemical structures of paeoniflorin metabolites were identified by comparing the MS and MS/MS spectra with the self-constructed database and simulation software. Based on this analytical strategy, 20 metabolites of paeoniflorin were found and 6 metabolites (including four new compounds) were tentatively identified. It was shown that hydrolysis and oxidation were the major metabolic pathways of paeoniflorin in rat liver microsomes, and the main metabolic sites were the structures of pinane and the ester bond. These findings were significant for a better understanding of the metabolism of paeoniflorin in rat liver microsomes and the proposed metabolic pathways of paeoniflorin might provide fundamental support for the further research in the pharmacological mechanism of Paeoniae Radix Rubra (PRR).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hyuck Joon Kwon ◽  
Yoshihiro Ohmiya

Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.


2018 ◽  
Vol 9 (3) ◽  
pp. 1444-1453 ◽  
Author(s):  
He Lin ◽  
Zhongying Liu ◽  
Zifeng Pi ◽  
Lihui Men ◽  
Weijia Chen ◽  
...  

This study investigates the antagonistic effect of Panax ginseng in rats with estrogen decline by its intervention in some major endogenous metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document