scholarly journals Distributed Virtual Environment Basketball Equipment Embedded Systems’ Research and Development

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Zhou

With the development of social economy and the improvement of material level, people are paying more and more attention to their own health, and they are also constantly improving their fitness awareness. As far as the current sports equipment is concerned, the boring exercise methods can no longer satisfy people’s pursuit of higher quality fitness exercises. The embedding of the distributed virtual environment can incorporate its perceptual, immersive, and interactive characteristics, which increases the realization of multiuser interactive behavior in the field of sports equipment in the virtual scene. Therefore, this paper proposes the research and development of basketball sports equipment embedded system based on distributed virtual environment. First of all, this article adopts the literature method to learn the application of distributed virtual environment and embedded system in depth and, secondly, designs the embedded system architecture of basketball sports equipment suitable for distributed virtual environment and the software and hardware framework of the embedded system. Finally, the performance, delay comparison, system optimization test, and other aspects of the embedded system are analyzed. The average delay of interactive functions of embedded systems based on distributed virtual environment is 1.4 min, which saves 4 min compared with traditional interactive methods. And, the throughput rate of the system has also been greatly improved. The research on the embedded system of sports equipment based on the distributed virtual environment proposed in this paper will be beneficial to the development of society and economy, and it can also help more people to enrich the way of sports and enhance the fun of sports.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


Author(s):  
Lisane Brisolara de Brisolara ◽  
Marcio Eduardo Kreutz ◽  
Luigi Carro

This chapter covers the use of UML as a modeling language for embedded systems design. It introduces the UML language, presenting the history of its definition, its main diagrams and characteristics. Using a case study, we show that using the standard UML with its limitations one is not able to model many important characteristics of embedded systems. For that reason, UML provides extension mechanisms that enable one to extend the language for a given domain, through the definition of profiles covering domain-specific applications. Several profiles have been proposed for the embedded systems domain, and some of those that have been standardized by OMG are presented here. A case study is also used to present MARTE, a new profile specifically proposed for the embedded system domain, enabling designers to model aspects like performance and schedulability. This chapter also presents a discussion about the effort to generate code from UML diagrams and analyses the open issues to the successful use of UML in the whole embedded system design flow.


Author(s):  
Sasi Bhanu Jammalamadaka ◽  
Vinaya Babu A ◽  
Trimurthy A

<p>Embedded systems that monitor and control safety and mission critical system are communicated with by a HOST located at a remote location through Internet. Such kind of embedded systems are developed to be dynamically evolvable with respect to syntax, semantics, online testing and communication subsystems. All these systems are to be dynamically evolvable and the components needed for evolution are also to be added into the embedded system. Architectural  models describe  various components using which dynamically evolvable sub-systems are realised through implementation by using specific and related technologies. Implementation system describe the platform, code units and the interlacing of various processes/tasks to the elementary level of details. WEB services place an excellent platform for implementing dynamically evolvable  systems due to the use of open standards.</p><p> </p><p>This paper presents an implementation system that is related to dynamically evolvable communication and other sub-systems using web services technologies.</p>


Author(s):  
Erik Persson ◽  
Ha˚kan Gustavsson

This article discusses the resource utilization of embedded systems in the automotive industry. Traditionally, the major cost driver — or resource input — has been regarded as the hardware cost. Issues such as software development costs and maintenance costs have historically been neglected. In order to address this, the article embraces the more comprehensive view on resources that a resource can be regarded as anything which could be thought of as a strength or weakness of a given firm. In this article the major drivers of resource consumption are identified. The work has also included several interviews with employees in order to find empirical data of the embedded systems in vehicles. This paper proposes a method to evaluate the resource efficiency of user functions implemented through the embedded system. By the use of Data Envelopment Analysis — which has proven to be a useful method — the resource utilization of six user functions is evaluated. Future work of particular interest would be to perform a more extensive case study.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4758
Author(s):  
Yang-Hsin Fan

Many embedded systems are implemented for healthcare, and smart homes and spaces. These devices are generally designed for elderly care, for monitoring, surveillance, and collection information. As embedded systems are ubiquitous and pervasive in a smart home, office, or space, different layout affects not only reduce the implementation cost but also the power density of electromagnetic waves. This study aimed to develop a multiple-embedded-system optimization layout to consume less electromagnetic wave power density and gain better communication strength. For smart offices, we analyzed the layout topology of n-shaped and n-shaped with door layout categories. On the basis of the location of each embedded system in a communication center via an n-shaped layout, we investigated the electromagnetic wave effect to the local, direct, and semidirect effects. Indirect and subindirect effects were also studied in the n-shaped layout with a door. In addition, we derived a set of formulas from the scope for the diverse effects to help users to quickly identify the scope of each effect. To verify the multiple-embedded-system optimization layout, 16 cooperating embedded systems with four test cases in a smart office were used to evaluate the diverse effects of electromagnetic wave power density and communication strength. Experiment results showed that the optimization layout consumed 3950 × 10−6 W/m2 electromagnetic wave power density.


2011 ◽  
Vol 267 ◽  
pp. 98-103
Author(s):  
Chi Pin Wei ◽  
Zhao Lin Li ◽  
Hao Liu ◽  
Zhi Xiang Chen

Embedded systems with digital signal processor (DSP) become more and more popular for the increasing requirement of supercomputing these days. Efficient development of DSP serials used in embedded systems shortens the embedded system R&D cycle. Functional verification is one of the most complex and expensive tasks during DSP serials design process. A random test platform which is urged for DSP serials verification is proposed in this paper. The platform can automatically generate the random test program. The platform also realized the recording and checking of simulation results, which make the verification more effective. In order to improve the efficiency of DSP verification, a testing experience library has been generated through the testing procedure. This platform can be transplanted for different DSP models easily by updating few modules. According to the verification results, this platform has satisfactory coverage of DSP models.


2021 ◽  
Author(s):  
Gulcicek Dere

Besides the use of embedded systems in the field of electrical and electronics engineering, industrial, telecommunication, military, and many other commercial applications, and the other applications in the field of medical and biomedical are becoming increasingly common. Embedded system applications are increasing not only with designs on devices or with clothing, factories, medical and military equipments, portable devices, but also with applications such as ‘mobile worlds’ and ‘e-worlds’, Artificial Intelligence and IoT (Internet of things) with the possibility to make all kinds of software on them. In recent years, with the rise of infectious diseases such as the Covid 19 virus, there is a growing need for telemedicine applications such as diagnosis, prognosis and patient management. Embedded system technologies have occupied an important area in biomedical technology. Especially, to develop tools for the purposes of increasing the safety of healthcare workers in the event of epidemic infectious diseases in processes such as pandemics. For this purpose, monitoring of patients discharged from hospitals at home or non-intensive care beds during quarantine, or isolated in their homes, outpatient, and mildly ill, remotely, instantly, safely and quickly, are becoming increasingly important. In this section, we will give an overview of the embedded system structure and applications.


2018 ◽  
pp. 94-101
Author(s):  
Dmytro Fedasyuk ◽  
Tetyana Marusenkova ◽  
Ratybor Chopey

The work deals with a significant problem of ensuring that the execution time of a firmware running inside a microcontroller-based real-time embedded system never goes out of its expected range, no matter for how long the embedded system has been used. Once having been tested before the first usage, a newly created embedded system is gradually getting slower in its response, due to the fact that its hardware components get worn-out with aging. A possible solution is a replacement of the hardware components that most contribute to such a change in the response time of the embedded system. If such a replacement takes place too far in advance, long before hardware components actually start showing any decline in their response time, the above-mentioned solution is cost-ineffective and impractical, as it leads to a waste of equipment and efforts. We introduce a method for predicting the appropriate maintenance period of a real-time embedded system on the basis of the characteristics of its hardware components.


Sign in / Sign up

Export Citation Format

Share Document