scholarly journals Directional Itinerary Planning for Multiple Mobile Agents in Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mostefa Bendjima ◽  
Mohammed Feham ◽  
Mohamed Lehsaini

Currently, the majority of research in the area of wireless sensor networks (WSNs) is directed towards optimizing energy use during itinerary planning by mobile agents (MAs). The route taken by the MA when migrating can get a significant effect on energy consumption and the lifespan of the network. Conversely, finding an ideal arrangement of Source Nodes (SNs) for mobile agents to visit could be a problematic issue. It is within this framework that this work focused on solving certain problems related to itinerary planning based on a multimobile agent (MMA) strategy in networks. The objective of our research was to increase the lifespan of sensor networks and to diminish the length of the data collection task. In order to achieve our objective, we proposed a new approach in WSNs, which took into consideration the criterion of an appropriate number of MAs, the criterion of the appropriate grouping of SNs, and finally the criterion of the optimal itinerary followed by each MA to visit all its SNs. Thus, we suggested an approach that may be classified as a centralized planning model where the itinerary schedule is entirely shaped by the base station (sink) which, unlike other approaches, is no longer constrained by energy consumption. A series of simulations to measure the performance of the new planning process was also carried out.

Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668484 ◽  
Author(s):  
Huthiafa Q Qadori ◽  
Zuriati A Zulkarnain ◽  
Zurina Mohd Hanapi ◽  
Shamala Subramaniam

Recently, wireless sensor networks have employed the concept of mobile agent to reduce energy consumption and obtain effective data gathering. Typically, in data gathering based on mobile agent, it is an important and essential step to find out the optimal itinerary planning for the mobile agent. However, single-agent itinerary planning suffers from two primary disadvantages: task delay and large size of mobile agent as the scale of the network is expanded. Thus, using multi-agent itinerary planning overcomes the drawbacks of single-agent itinerary planning. Despite the advantages of multi-agent itinerary planning, finding the optimal number of distributed mobile agents, source nodes grouping, and optimal itinerary of each mobile agent for simultaneous data gathering are still regarded as critical issues in wireless sensor network. Therefore, in this article, the existing algorithms that have been identified in the literature to address the above issues are reviewed. The review shows that most of the algorithms used one parameter to find the optimal number of mobile agents in multi-agent itinerary planning without utilizing other parameters. More importantly, the review showed that theses algorithms did not take into account the security of the data gathered by the mobile agent. Accordingly, we indicated the limitations of each proposed algorithm and new directions are provided for future research.


2017 ◽  
Vol 13 (05) ◽  
pp. 122 ◽  
Author(s):  
Bo Feng ◽  
Wei Tang ◽  
Guofa Guo

In wireless sensor networks, the nodes around the base station have higher energy consumption due to the forwarding task of all the detected data. In order to balance the energy consumption of the nodes around the base station, a reasonable and effective mechanism of node rotation dormancy is put forward. In this way, a large number of redundant nodes in the network are in a dormant state, so as to reduce the load of important nodes around the base station. The problems of the redundant nodes in the sensor network are analyzed, and a new method is proposed to distinguish the redundant nodes based on local Delaunay triangulation and multi node election dormancy mechanism. The experimental results showed that this method could effectively distinguish the redundant nodes in the network; at the same time, through the multi round election mechanism, parts of redundant nodes are made dormant. In summary, they can reduce the network energy consumption on the condition of guaranteeing the original coverage.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Author(s):  
Fuseini Jibreel ◽  
Emmanuel Tuyishimire ◽  
I M Daabo

Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from the hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, less data transmission to the Base station (BS). In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol ( HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. Results show that the proposed routing scheme outperforms two existing ones.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1835 ◽  
Author(s):  
Ruan ◽  
Huang

Since wireless sensor networks (WSNs) are powered by energy-constrained batteries, many energy-efficient routing protocols have been proposed to extend the network lifetime. However, most of the protocols do not well balance the energy consumption of the WSNs. The hotspot problem caused by unbalanced energy consumption in the WSNs reduces the network lifetime. To solve the problem, this paper proposes a PSO (Particle Swarm Optimization)-based uneven dynamic clustering multi-hop routing protocol (PUDCRP). In the PUDCRP protocol, the distribution of the clusters will change dynamically when some nodes fail. The PSO algorithm is used to determine the area where the candidate CH (cluster head) nodes are located. The adaptive clustering method based on node distribution makes the cluster distribution more reasonable, which balances the energy consumption of the network more effectively. In order to improve the energy efficiency of multi-hop transmission between the BS (Base Station) and CH nodes, we also propose a connecting line aided route construction method to determine the most appropriate next hop. Compared with UCCGRA, multi-hop EEBCDA, EEMRP, CAMP, PSO-ECHS and PSO-SD, PUDCRP prolongs the network lifetime by between 7.36% and 74.21%. The protocol significantly balances the energy consumption of the network and has better scalability for various sizes of network.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3726 ◽  
Author(s):  
Zhang ◽  
Qi ◽  
Li

Monitoring of marine polluted areas is an emergency task, where efficiency and low-power consumption are challenging for the recovery of marine monitoring equipment. Wireless sensor networks (WSNs) offer the potential for low-energy recovery of marine observation beacons. Reducing and balancing network energy consumption are major problems for this solution. This paper presents an energy-saving clustering algorithm for wireless sensor networks based on k-means algorithm and fuzzy logic system (KFNS). The algorithm is divided into three phases according to the different demands of each recovery phase. In the monitoring phase, a distributed method is used to select boundary nodes to reduce network energy consumption. The cluster routing phase solves the extreme imbalance of energy of nodes for clustering. In the recovery phase, the inter-node weights are obtained based on the fuzzy membership function. The Dijkstra algorithm is used to obtain the minimum weight path from the node to the base station, and the optimal recovery order of the nodes is obtained by using depth-first search (DFS). We compare the proposed algorithm with existing representative methods. Experimental results show that the algorithm has a longer life cycle and a more efficient recovery strategy.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Aiping Pang ◽  
Hongbo Zhou ◽  
Junjie Ge

In the water area monitoring of the traditional wireless sensor networks (WSNs), the monitoring data are mostly transmitted to the base station through multihop. However, there are many problems in multihop transmission in traditional wireless sensor networks, such as energy hole, uneven energy consumption, unreliable data transmission, and so on. Based on the high maneuverability of unmanned aerial vehicles (UAVs), a mobile data collection scheme is proposed, which uses UAV as a mobile sink node in WSN water monitoring and transmits data wirelessly to collect monitoring node data efficiently and flexibly. In order to further reduce the energy consumption of UAV, the terminal nodes are grouped according to the dynamic clustering algorithm and the nodes with high residual energy in the cluster are selected as cluster head nodes. Then, according to the characteristics of sensor nodes with a certain range of wireless signal coverage, the angular bisection method is introduced on the basis of the traditional ant colony algorithm to plan the path of UAV, which further shortens the length of the mobile path. Finally, the effectiveness and correctness of the method are proved by simulation and experimental tests.


Sign in / Sign up

Export Citation Format

Share Document