scholarly journals Implant Prosthodontic Rehabilitation after Surgical Treatment for an Oropharyngeal Malignant Tumour Using Tantalum Dental Implants

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Marko Vuletić ◽  
Ivica Pelivan ◽  
Dragana Gabrić

Oropharyngeal cancer (OPC) represents a significant portion of head and neck cancers. In most cases, it is localised in the soft palate, lingual and palatine tonsils, base of the tongue, and the surrounding tissues. Alcohol and tobacco exposure are well-known evidence-based risk factors for developing OPC; however, over the last decade, there has been a rapid increase in OPC linked to human papillomavirus (HPV). Dental implant therapy faces many challenges related to immediate and long-term success, and patients who are rehabilitated with implant prosthodontic therapy often have numerous comorbidities. Tantalum is a rare transitional metal element which has high corrosion resistance and is extremely inert. Porous tantalum trabecular metal (PTTM) has high volumetric porosity, a low modulus of elasticity, and very high friction. PTTM implant surface enhancement allows “osseoincorporation,” which means the neovascularisation and formation of new bone directly onto the implant. A 65-year-old patient presented to the Department of Oral Surgery of Clinical Hospital Centre Zagreb after resection of the mandible due to OPC had oral rehabilitation. Three Zimmer Biomet Trabecular Metal™ implants ( 4.1 × 10   mm ) were inserted in the area of lower left first incisor, lower left second premolar, and lower right second premolar, and after four months, a new upper partial denture and the bar-retained mandibular overdenture were made. Implant prosthodontic rehabilitation of head and neck cancer patients is usually challenging in terms of achieving an improvement in its main aim, quality of life; however, today it is a safe and reliable therapy. Although radiation therapy may negatively affect the patient’s oral condition and influence the short- and long-term success of the implant, the presented case report showed that the excellent properties of PTTM-enhanced dental implants may give great basis for future comparative researches of using these implants in the treatment of oncologic patients.

2011 ◽  
Vol 37 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Hakan Bilhan ◽  
Onur Geckili ◽  
Belir Atalay ◽  
Selda Arat

Abstract Rhabdomyosarcoma is a malignant tumor that is most often seen in children younger than 15 years of age. This pathology is found mainly in the head and neck region. Treatment of rhabdomyosarcoma at early stages of life usually affects the dental and osseous development of children. Because of impaired development, microstomia can arise, making dental treatment more difficult. This article presents a patient with microstomia caused by resection of an embryonal rhabdomyosarcoma in the nasolabial region. The patient was treated with 5 dental implants and fixed hybrid prosthesis in the maxilla and 2 implants supporting an overdenture in the mandible.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Ralf Smeets ◽  
Bernd Stadlinger ◽  
Frank Schwarz ◽  
Benedicta Beck-Broichsitter ◽  
Ole Jung ◽  
...  

Objective.The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed.Discussion.The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented.Conclusion.Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1035
Author(s):  
Mohammed E. Sayed ◽  
Maryam H. Mugri ◽  
Mazen A. Almasri ◽  
Manea Musa Al-Ahmari ◽  
Shilpa Bhandi ◽  
...  

Dental implants are a widely used treatment modality for oral rehabilitation. Implant failures can be a result of many factors, with poor osseointegration being the main culprit. The present systematic review aimed to assess the effect of stem cells on the osseointegration of dental implants. An electronic search of the MEDLINE, LILACS, and EMBASE databases was conducted. We examined quantitative preclinical studies that reported on the effect of mesenchymal stem cells on bone healing after implant insertion. Eighteen studies that fulfilled the inclusion criteria were included. Various surface modification strategies, sites of placement, and cell origins were analyzed. The majority of the selected studies showed a high risk of bias, indicating that caution must be exercised in their interpretation. All the included studies reported that the stem cells used with graft material and scaffolds promoted osseointegration with higher levels of new bone formation. The mesenchymal cells attached to the implant surface facilitated the expression of bio-functionalized biomaterial surfaces, to boost bone formation and osseointegration at the bone–implant interfaces. There was a promotion of osteogenic differentiation of human mesenchymal cells and osseointegration of biomaterial implants, both in vitro and in vivo. These results highlight the significance of biomodified implant surfaces that can enhance osseointegration. These innovations can improve the stability and success rate of the implants used for oral rehabilitation.


2019 ◽  
Vol 45 (3) ◽  
pp. 173-180 ◽  
Author(s):  
Sompop Bencharit ◽  
Thiago Morelli ◽  
Silvana Barros ◽  
Jackson T. Seagroves ◽  
Steven Kim ◽  
...  

Porous tantalum trabecular metal (PTTM) has long been used in orthopedics to enhance neovascularization, wound healing, and osteogenesis; recently, it has been incorporated into titanium alloy dental implants. However, little is known about the biological responses to PTTM in the human oral cavity. We have hypothesized that, compared with conventional titanium alloy, PTTM has a greater expression of genes specific to neovascularization, wound healing, and osteogenesis during the initial healing period. Twelve subjects requiring at least 4 implants in the mandible were enrolled. Four 3 × 5mm devices, including 2 titanium alloy tapered screws and 2 PTTM cylinders, were placed in the edentulous mandibular areas using a split-mouth design. One device in each group was trephined for analysis at 2 and 4 weeks after placement. RNA microarray analysis and ingenuity pathway analysis were used to analyze osteogenesis gene expression and relevant signaling pathways. Compared to titanium alloy, PTTM samples exhibited significantly higher expressions of genes specific to cell neovascularization, wound healing, and osteogenesis. Several genes—including bone morphogenic proteins, collagens, and growth factors—were upregulated in the PTTM group compared to the titanium alloy control. PTTM materials may enhance the initial healing of dental implants by modifying gene expression profiles.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Carlo Maiorana ◽  
Dario Andreoni ◽  
Paola Polacco ◽  
Pier Paolo Poli

The decision-making process of complex clinical cases should involve multiple specialists to obtain a predictable result on a long-term basis. In view of the above, the present report is aimed at describing the multidisciplinary management of a partially edentulous female patient presenting with a severely compromised residual dentition. To improve function and aesthetics, the treatment combined multiple extractions, temporary rehabilitation with a complete removable denture, guided bone regeneration and implant insertion, soft tissue management, tooth alignment, and restorative dentistry. Thus, several dental branches were embraced during the treatment phases, including oral surgery and implantology, periodontology, orthodontics, and prosthodontics. The involvement of different specialists ensured the achievement of a good result from biological, functional, and aesthetic aspects. The patient was satisfied with the final outcome. In conclusion, to meet the patient’s expectations particularly in complex clinical situations, the interdisciplinary approach becomes essential from the early phases in order to identify the ideal treatment plan with the correct time sequence.


2016 ◽  
Vol 29 (6) ◽  
pp. 649-655 ◽  
Author(s):  
Georgios E. Romanos ◽  
Rafael Arcesio Delgado-Ruiz ◽  
Danielle Sacks ◽  
Josè Luis Calvo-Guirado

2008 ◽  
Vol 34 (6) ◽  
pp. 319-324 ◽  
Author(s):  
Mario Santagata ◽  
Luigi Guariniello ◽  
Alfredo D'Andrea ◽  
Gianpaolo Tartaro

Abstract Atrophic edentulous jaws can pose a significant challenge to successful oral rehabilitation with endosseous dental implants. Although ridge augmentation can help to restore ridge volume, grafting procedures can significantly increase patient morbidity, costs, and treatment time, depending on the case, before dental implants can be placed. This article reports on an alternative technique used in 3 patients to expand ridge volume and place dental implants in a single procedure. A partial-thickness flap was elevated to expose the alveolar crest, and conventional implant osteotomies were partially prepared. Along the crest of the ridge, a furrow with terminal vertical releases 1 to 3 mm deep were created, and a bone chisel was used to deepen the furrow. Osteotomes were used to complete preparation of the implant receptor sites, and the implants were placed. Bony plates were stabilized through the use of resorbable sutures. Furrows more than 2 mm deep between the plates were augmented with a xenograft. Collegen membranes were placed over the sites, and soft tissue was sutured. Healing was unremarkable, and all implants were successfully restored. For these patients, the ridge expansion technique resulted in substantial bone reconstruction with little or no grafting. Long-term, prospective studies on this procedure are required before definitive conclusions can be drawn.


Sign in / Sign up

Export Citation Format

Share Document