scholarly journals High-Efficiency Vibration Isolation for a Three-Phase Power Transformer by a Quasi-Zero-Stiffness Isolator

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hao Cao ◽  
Yaopeng Chang ◽  
Jiaxi Zhou ◽  
Xuhui Zhao ◽  
Ling Lu ◽  
...  

The vibrations generated by a three-phase power transformer reduce the comfort of residents and the service life of surrounding equipment. To resolve this tough issue, a quasi-zero-stiffness (QZS) isolator for the transformer is proposed. This paper is devoted to developing a QZS isolator in a simple way for engineering practices. The vertical springs are used to support the heavy weight of the transformer, while the oblique springs are employed to fulfill negative stiffness to neutralize the positive stiffness of the vertical spring. Hence, a combination of the vertical and oblique spring can yield high static but low dynamic stiffness, and the vibration isolation efficiency can be improved substantially. The dynamic analysis for the QZS vibration isolation system is conducted by the harmonic balance method, and the vibration isolation performance is estimated. Finally, the prototype of the QZS isolator is manufactured, and then the vibration isolation performance is tested comparing with the linear isolator under real power loading conditions. The experimental results show that the QZS isolator prominently outperforms the existing linear isolator. This is the first time to devise a QZS isolator for three-phase power transformers with heavy payloads in engineering practices.

Author(s):  
Ata Donmez ◽  
Ender Cigeroglu ◽  
Gokhan O. Ozgen

Static deflections due to static loadings limit the isolation performance of linear vibration isolation systems. Therefore, quasi-zero stiffness (QZS) mechanisms, i.e. nonlinear isolators with high static and low dynamic stiffness characteristic, are used to decrease the natural frequency of the isolation structure and improve the isolation performance of the system while having the same loading capacity. However, the resulting system is highly nonlinear and unstable solutions may as well occur. Although increasing the amount of linear viscous damping in the system reduces the nonlinearity, it has adverse effect on the isolation region. Geometrically nonlinear damping is effective when the response of the isolation system increases; hence, isolation region is unaffected. Combination of position depended nonlinear damping and QZS mechanism eliminates highly input depended response of QZS mechanism. In this study, a single degree of freedom system with a nonlinear isolator having QZS mechanism and geometrically nonlinear damping is considered. The nonlinear differential equations of motion of the isolation system are converted into a set of nonlinear algebraic equations by using harmonic balance method, which are solved by using Newton’s method with arc-length continuation. Several case studies are performed and the effect of stiffness and loading deviations on the isolation performance is studied.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Seong-Cheol Kwon ◽  
Mun-Shin Jo ◽  
Hyun-Ung Oh

On-board appendages with mechanical moving parts for satellites produce undesirable micro-jitters during their on-orbit operation. These micro-jitters may seriously affect the image quality from high-resolution observation satellites. A new application form of a passive vibration isolation system was proposed and investigated using a pseudoelastic SMA mesh washer. This system guarantees vibration isolation performance in a launch environment while effectively isolating the micro-disturbances from the on-orbit operation of jitter source. The main feature of the isolator proposed in this study is the use of a ring-type mesh washer as the main axis to support the micro-jitter source. This feature contrasts with conventional applications of the mesh washers where vibration damping is effective only in the thickness direction of the mesh washer. In this study, the basic characteristics of the SMA mesh washer isolator in each axis were measured in static tests. The effectiveness of the design for the new application form of the SMA mesh washer proposed in this study was demonstrated through both launch environment vibration test at qualification level and micro-jitter measurement test which corresponds to on-orbit condition.


2021 ◽  
Vol 263 (3) ◽  
pp. 3011-3022
Author(s):  
Jing Bian ◽  
Xingjian Jing ◽  
Yishen Tian

Passive vibration isolation is always preferable in many engineering practices. To this aim, an innovative, compact, and passive vibration isolation mount is studied in this paper. The novel mount is adjustable to different payloads due to a special oblique and tunable stiffness mechanism, and of high vibration isolation performance with a wider quasi-zero-stiffness range due to the deliberate employment of negative stiffness of the X-shaped structure. The X-shaped structure has been well studied recently due to its excellent nonlinear stiffness and damping properties. In this study, by using of the negative stiffness property within the X-shaped structure, the X-shaped mount (X-mount) can have an obviously larger vibration displacement range which maintains the quasi-zero-stiffness property. A special oblique spring is thus introduced such that the overall equivalent stiffness can be much easily adjusted. Systematic parametric study is conducted to reveal the critical design parameters and their relationship with vibration isolation performance. A prototype and experimental validations are implemented to validate the theoretical results. It is believed that the X-mount would provide an innovative technical upgrade to many existing vibration isolation mounts in various engineering practices and it could also be the first prototyped mount which can offer adjustable quasi-zero stiffness conveniently.


2021 ◽  
Author(s):  
Xinghua Zhou ◽  
Dingxuan Zhao ◽  
Xiao Sun ◽  
Xiao Yang ◽  
Jianhai Zhang ◽  
...  

Abstract A novel passive asymmetric quasi-zero stiffness vibration isolator (AQZS-VI) comprising two linear springs acting in parallel with one negative stiffness element (NSE) is proposed, of which the NSE is mainly constructed by the combination of cantilever plate spring and L-shaped lever (CPS-LSL). The static model of the isolator is deduced considering the geometrical nonlinearity of the NSE and the bending deformation of plate spring. The nonlinear stiffness properties of the CPS-LSL and the AQZS-VI, as well as the nonlinear damping properties of the AQZS-VI are discussed. The absolute displacement transmissibility of the AQZS-VI under base displacement excitation is obtained using Harmonic Balance Method, and the effects of different excitation amplitudes and damping factors on the vibration isolation performance are analyzed. Better than other quasi-zero stiffness vibration isolators (QZS-VI) whose NSEs do not provide supporting force at zero stiffness point, the NSE of the AQZS-VI provides more supporting force than the parallel connected linear springs, which is very beneficial for improving the bearing capacity of the isolator. Compared with a typical symmetric QZS-VI with same damping property, the AQZS-VI has longer stroke with low stiffness and lower peak value of displacement transmissibility. The prototype experiments indicate that the AQZS-VI outperforms the linear counterpart with much smaller starting frequency of vibration isolation and lower displacement transmissibility. The proposed AQZS-VI has great potential for applying in various engineering practices with superior vibration isolation performance.


Author(s):  
Young-Tai Choi ◽  
Mikel Brigley ◽  
Norman M. Wereley

This study addresses the application of MR (magnetorheological) isolators to vibration isolation of precision payloads for aerial vehicles. To this end, a precision payload in an aerial vehicle is modeled as a six-degree-of-freedom (DOF) lumped parameter model of a sensor assembly. An MR isolator is modeled as a 3-DOF passive spring-damping element and a 3-DOF semi-active yield force due to the yield stress of an MR fluid. Three MR isolators are configured with equal installation angles between the precision payload and the base structure in the aerial vehicle. The governing equations of motion for the MR vibration isolation system of the precision payload for the aerial vehicle are derived and then key parameters of the MR isolators, such as stiffness, damping, and isolator orientation, are determined via a global optimization method. The simulated response of the passive MR vibration isolation system with no magnetic field control input and constant magnetic field control input are presented and analyzed under different excitation conditions. To improve the passive MR vibration isolation performance, a linear quadratic Gaussian (LQG) control algorithm is designed. Finally, simulated responses of the semi-active MR vibration isolation performance using LQG control are evaluated and compared with those of passive (zero or constant field) MR vibration isolation systems.


Author(s):  
Rong-Jun Jiang ◽  
Shi-Jian Zhu

Taking single degree of freedom vibration isolation system under simple harmonic excitation as an example, and considering the energy, the vibration isolation performance in different conditions was studied theoretically and numerically. The results shows that when the simple harmonic excitation import energy is definite, the vibration isolation performance at the primary harmonic frequency of the nonlinear vibration isolation system is better than that of the linear system, and the vibration isolation performance of the nonlinear vibration isolation system in chaotic vibration state is much better than that in non-chaotic vibration state. For the same isolated object, if can let the vibration isolation system vibrate chaotically, the system will possess the best isolation performance at the primary frequency.


2015 ◽  
Vol 752-753 ◽  
pp. 913-917
Author(s):  
Gong Yu Pan ◽  
Qian Qian Wang ◽  
Xin Yang

In order to improve the vibration isolation performance of engine mount, a new type of magneto-rheological semi-active mount with multiple inertia tracks is designed based on the existing magneto-rheological semi-active mount . The mechanical model is established according to the mount. The expression of the dynamic stiffness and damping lag angle is deduced, then the dynamic characteristics is simulated in the simulation software. At the same time, verify this model correct by the experiments.


Author(s):  
Yuansheng Peng ◽  
Honghua Dai ◽  
Hao Zhang ◽  
Xiaokui Yue

Collision and strong impacts take place in mission of the on orbit capture of non-cooperative spacecraft. So, it is necessary to design a vibration isolation system with efficient vibration isolation performance. A Stewart vibration isolation platform based on the bio-inspired isolation system is proposed in this paper. The characteristics of the novel bio-inspired Stewart platform realizes the vibration isolation protection of the serving spacecraft during the capture mission. The dynamic model of the vibration isolation platform is established by Lagrange's equations. The fidelity of the established dynamic model is verified via a comparison of the theoretical simulation and the ADAMS simulation. Comparisons between the presently proposed vibration isolation platform and the traditional spring-mass-damper type Stewart vibration isolation platform demonstrates the advantages of the present platform. The effects of system parameters on the isolation performance of the present platform are thoroughly investigated. The feedback linearization control method is used to control the present platform which overcomes the drift motion that occurs in the passive isolation case. The results show that the novel bio-inspired Stewart platform has excellent vibration isolation performance, which provides a promising way for the vibration isolation of the non-orbit capture mission.


Sign in / Sign up

Export Citation Format

Share Document