scholarly journals Virtual Reality Design and Realization of Interactive Garden Landscape

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xuanfeng Zhang ◽  
Song Yan ◽  
QuanQi

It is very important to study and explore the application of virtual reality technology in landscape garden design, especially in the current environment of triple network integration and Internet of Things construction, to promote and facilitate the rapid development of digital landscape garden design in China. In this paper, we study the implementation method of virtual landscape gardening system and establish a virtual environment based on the ancient city of Yangcheng. On the computer platform, we study and realize a virtual roaming system of medium complexity with more complete roaming functions. Using the Quest3D software platform, a desktop-type virtual garden simulation system was developed, focusing on the virtual reality modeling technology method and virtual system implementation. The experimental results show that the GPU-accelerated drawing method based on GLSL can significantly improve the drawing frame rate of 3D garden landscape vegetation scenes with a small amount of scene data and has a certain feasibility. Based on the OpenSceneGraph (OSG) graphics rendering engine, the visualization of various types of 3D landscape models is realized, and the spatial layout of various types of landscape with parametric control is realized through digital vector layers, which flexibly manage and organize various garden elements and reasonably organize the spatial topological relationship between various types of landscape in 3D space. By integrating cross-platform ArcGISEngine components, the basic data of garden scenes including terrain data and vector data are managed. Through scene view cropping and hierarchical detail modeling technologies, the drawing efficiency and rendering real time of the garden landscape are improved. It realizes interactive 3D scene browsing and provides a six-degree-of-freedom all-round display of the overall landscape.

2020 ◽  
Vol 10 (4) ◽  
pp. 1517 ◽  
Author(s):  
Alexander P. Walmsley ◽  
Thomas P. Kersten

As virtual reality (VR) and the corresponding 3D documentation and modelling technologies evolve into increasingly powerful and established tools for numerous applications in architecture, monument preservation, conservation/restoration and the presentation of cultural heritage, new methods for creating information-rich interactive 3D environments are increasingly in demand. In this article, we describe the development of an immersive virtual reality application for the Imperial Cathedral in Königslutter, in which 360° panoramic photographs were integrated within the virtual environment as a novel and complementary form of visualization. The Imperial Cathedral (Kaiserdom) of Königslutter is one of the most important examples of Romanesque architecture north of the Alps. The Cathedral had previously been subjected to laser-scanning and recording with 360° panoramic photography by the Photogrammetry & Laser Scanning lab of HafenCity University Hamburg in 2010. With the recent rapid development of consumer VR technology, it was subsequently decided to investigate how these two data sources could be combined within an immersive VR application for tourism and for architectural heritage preservation. A specialised technical workflow was developed to build the virtual environment in Unreal Engine 4 (UE4) and integrate the panorama photographs so as to ensure the seamless integration of these two datasets. A simple mechanic was developed using the native UE4 node-based programming language to switch between these two modes of visualisation.


2014 ◽  
Vol 644-650 ◽  
pp. 2311-2314 ◽  
Author(s):  
Hai Jian Cui ◽  
Wen Yao Xiong

With the rapid development of information technology such as computer and network, virtual reality technology in scientific research, education, and commercial, industrial, military, entertainment, and many other fields has been widely used. Virtual reality technique advantage of the characteristics of the computer and network technology to generate realistic 3D vision, hearing, touch and smell and feel the world, let the user can from one point of view, use natural skills and related equipment to browse this generated virtual object and interaction. Look from the application of virtual reality is the most basic, constitute the state of virtual reality must be based on the design of the model, which is the integrated application of 3D modeling technology.


Author(s):  
Guangchao Zhang ◽  
Xinyue Kou

In recent years, with the rapid development of VR technology, its application range gradually involves the field of urban landscape design. VR technology can simulate complex environments, breaking through the limitations of traditional environmental design on large amounts of information processing and rendering of renderings. It can display complex and abstract urban environmental design through visualization. With the support of high-speed information transmission in the 5G era, VR technology can simulate the overall urban landscape design by generating VR panoramas, and it can also bring the experiencer into an immersive and interactive virtual reality world through VR video Experience. Based on this, this article uses the 5G virtual reality method in the new media urban landscape design to conduct research, aiming to provide an urban landscape design method with strong authenticity, good user experience and vividness. This paper studies the urban landscape design method in the new media environment; in addition, how to realize the VR panorama in the 5G environment, and also explores the image design of each node in the city in detail; and uses the park design in the city As an example, the realization process of the entire virtual reality is described in detail. The research in this article shows that the new media urban landscape design method based on 5G virtual reality, specifically to the design of urban roads, water divisions, street landscapes, and people’s living environment, makes the realization of smart cities possible.


Fast track article for IS&T International Symposium on Electronic Imaging 2021: Imaging and Multimedia Analytics in a Web and Mobile World 2021 proceedings.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878363 ◽  
Author(s):  
Nien-Tsu Hu ◽  
Pu-Sheng Tsai ◽  
Ter-Feng Wu ◽  
Jen-Yang Chen ◽  
Lin Lee

This article explores the construction of a geometric virtual reality platform for the environmental navigation. Non-panoramic photos and wearable electronics with Bluetooth wireless transmission functions are used to combine the user’s actions with the virtual reality environment in a first-person virtual reality platform. The 3ds Max animation software is used to create three-dimensional models of real buildings. These models are combined with the landscape models in Unity3d to create a virtual campus scene that matches real landscape. The wearable device included an ATMega168 chip as a microcontroller; it was connected to a three-axis accelerometer, a gyroscope, and a Bluetooth transmitter to detect and transmit various movements of the user. Although the development of the mechatronics, software, and engineering involved in the three-dimensional animation are the main objective, we believe that the methods and techniques can be modified for various purposes. After the system architecture was created and the operations of the platform were verified, wearable devices and virtual reality scenes are concluded to be able to be used together seamlessly.


2021 ◽  
Vol 25 (5) ◽  
pp. 31-40
Author(s):  
E. V. Romanova ◽  
L. V. Kurzaeva ◽  
L. Z. Davletkireeva ◽  
T. B. Novikova

The rapid development of virtual and augmented reality technologies is currently taking place in almost all spheres of activity. Elements of virtual and augmented reality are used in such areas as education, medicine, transport, gaming, tourism and others. The active spread of these technologies causes the emergence of special competencies in the IT labor market and, as a result, the formation of new professions.Many Russian universities are training students in IT training areas. Specialization in the development of computer games and virtual reality applications has begun recently. The provision of practical classes is accompanied by specific tasks, which gives students the opportunity to improve the use of software and technical devices.The relevance of the research is determined by the current demand for the use of the latest technologies by IT developers in the field of creating computer games. Today, technologies that provide a player’s immersion in virtual reality are becoming more and more popular. One of these technologies is a suit with wearable sensors that track a person’s position in space in real time. However, there are quite a few real described projects in the literature and on the Internet. This study examines the process of developing a task for creating a game application using virtual reality technology: a suit with wearable sensors for teaching students.Materials and methods of research. Timely identification of the needs of the IT market in personnel training allows educational organizations to form new training programs of different levels of training. This approach makes it possible to target the educational and methodological materials being developed to use the latest achievements in the development of the field under study.Using a systematic approach, the study characterizes virtual reality suits and sensors for monitoring the position in the user’s space. Thus, the goal of the task was to ensure the immersiveness and convenience of interaction between the player and the game environment.Based on materials on software, position sensors in space, the approach of pedagogical design was applied and the procedure was formed for a practical task, reflecting the relevant competencies.Results. The study was conducted on the basis in the framework of laboratory and practical work of students, as well as at a real enterprise. Training in the new profile of the direction of training “Applied informatics” is fully equipped with all the latest technologies in this field. As a result of the work, the content of the practical task was developed.Real development of virtual and augmented reality applications is conducted jointly with students. Almost all projects used a suit with body sensors.Conclusion. Our study examines in detail the process of developing an application using a suit with wearable sensors for further training of students. Based on the results, work can be carried out on real projects for any field. Based on the research materials, it is planned to issue a textbook for students with the profile of developing computer games and virtual / augmented reality applications.


2018 ◽  
pp. 31-63 ◽  
Author(s):  
Lukáš Herman ◽  
Tomáš Řezník ◽  
Zdeněk Stachoň ◽  
Jan Russnák

Various widely available applications such as Google Earth have made interactive 3D visualizations of spatial data popular. While several studies have focused on how users perform when interacting with these with 3D visualizations, it has not been common to record their virtual movements in 3D environments or interactions with 3D maps. We therefore created and tested a new web-based research tool: a 3D Movement and Interaction Recorder (3DmoveR). Its design incorporates findings from the latest 3D visualization research, and is built upon an iterative requirements analysis. It is implemented using open web technologies such as PHP, JavaScript, and the X3DOM library. The main goal of the tool is to record camera position and orientation during a user’s movement within a virtual 3D scene, together with other aspects of their interaction. After building the tool, we performed an experiment to demonstrate its capabilities. This experiment revealed differences between laypersons and experts (cartographers) when working with interactive 3D maps. For example, experts achieved higher numbers of correct answers in some tasks, had shorter response times, followed shorter virtual trajectories, and moved through the environment more smoothly. Interaction-based clustering as well as other ways of visualizing and qualitatively analyzing user interaction were explored.


Author(s):  
Zhen You ◽  
Jiewen Huang ◽  
Jinyun Xue ◽  
Jiaxiang Chen ◽  
Jiaxin Liu ◽  
...  

Distributed Virtual Reality (DVR) is a combination of network and virtual reality technology, it could facilitate to construct a uniformly shared Distributed Virtual Environment (DVE) by using network to connect geographically distributed multiplayers. This paper concentrates on the theoretical research and practical development about Multiplayer Virtual Intelligent System (MVIS), and the main contribution could be summarized as two points. (1) Based on the DVR technology, this paper presented some theoretical research on MVIS, including the classification of virtual entities, communication pattern of entities, and the behavioral consistency research. Furthermore, a Multiplayer Earliest Deadline First (MEDF) program was proposed in order to guarantee the consistency of entities. (2) A prototype algorithm experiment system, called Multiplayer Graph-algorithm Intelligent System (MGIS), was designed. MGIS not onlyefficiently solves many problems in traditional computer algorithm teaching, such as high-abstraction, difficulty to understand, and lack of interaction mechanism; but also extends the application of DVR to cultural tourism, because MGIS is developed on the 3D scene of Lushan Mountain, which is one of the notable tourist attractions in China, and was included in the UNESCO World Heritage list in 1996. What i’s more, MGIS illustrates the ability of expression, applicability and generality of the theoretical research about MVIS.


Sign in / Sign up

Export Citation Format

Share Document