scholarly journals Construction of a Prognostic Gene Signature Associated with Immune Infiltration in Glioma: A Comprehensive Analysis Based on the CGGA

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xiaoxiang Gong ◽  
Lingjuan Liu ◽  
Jie Xiong ◽  
Xingfang Li ◽  
Jie Xu ◽  
...  

Background. Tumor microenvironment (TME) is closely related to the progression of glioma and the therapeutic effect of drugs on this cancer. The aim of this study was to develop a signature associated with the tumor immune microenvironment using machine learning. Methods. We downloaded the transcriptomic and clinical data of glioma patients from the Chinese Glioma Genome Atlas (CGGA) databases (mRNAseq_693). The single-sample Gene Set Enrichment Analysis (ssGSEA) database was used to quantify the relative abundance of immune cells. We divided patients into two different infiltration groups via unsupervised clustering analysis of immune cells and then selected differentially expressed genes (DEGs) between the two groups. Survival-related genes were determined using Cox regression analysis. We next randomly divided patients into a training set and a testing set at a ratio of 7 : 3. By integrating the DEGs into least absolute shrinkage and selection operator (LASSO) regression analysis in the training set, we were able to construct a 15-gene signature, which was validated in the testing and total sets. We further validated the signature in the mRNAseq_325 dataset of CGGA. Results. We identified 74 DEGs associated with tumor immune infiltration, 70 of which were significantly associated with overall survival (OS). An immune-related gene signature was established, consisting of 15 key genes: adenosine triphosphate (ATP)-binding cassette subfamily C member 3 (ABCC3), collagen type IV alpha 1 chain (COL4A1), podoplanin (PDPN), annexin A1 (ANXA1), COL4A2, insulin-like growth factor binding protein 2 (IGFBP2), serpin family A member 3 (SERPINA3), CXXC-type zinc finger protein 11 (CXXC11), junctophilin 3 (JPH3), secretogranin III (SCG3), secreted protein acidic and rich in cysteine (SPARC)-related modular calcium-binding protein 1 (SMOC1), Cluster of Differentiation 14 (CD14), COL1A1, S100 calcium-binding protein A4 (S100A4), and transforming growth factor beta 1 (TGF-β1). The OS of patients in the high-risk group was worse than that of patients in the low-risk group. GSEA showed that interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT3) signaling, interferon gamma (IFN-γ) response, angiogenesis, and coagulation were more highly enriched in the high-risk group and that oxidative phosphorylation was more highly enriched in the low-risk group. Conclusion. We constructed a stable gene signature associated with immune infiltration to predict the survival rates of glioma patients.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xi Chen ◽  
Lijun Yan ◽  
Feng Jiang ◽  
Yu Lu ◽  
Ni Zeng ◽  
...  

Adrenocortical carcinoma (ACC) is a rare malignant tumor with poor prognosis. Ferroptosis, a new form of cell death, differs from other forms of cell death and plays a vital role in tumor progress. Our study aimed to establish a ferroptosis-related signature with prognostic value in ACC. RNA-seq data and corresponding clinical characteristics for ACC were downloaded from TCGA and GEO databases. Genes included in ferroptosis risk signature were assessed by univariable and multivariable Cox regression analysis as well as lasso regression analysis. The prognostic value of the ferroptosis risk signature was assessed using K-M and ROC curves. Furthermore, we performed GSEA to discover the enriched gene sets in high-risk group. Additionally, TIMER website was applied to detect a possible connection between the signature and immune cells infiltration. ssGSEA was performed to evaluate scores of immune cells and immune-related pathways in two groups. A ferroptosis signature comprised of six genes (SLC7A11, TP53, HELLS, ACSL4, PCBP2, and HMGB1) was constructed to predict prognosis and reflect the immune infiltration in ACC. Patients in high-risk group were inclined to have worse prognosis. The ferroptosis model performed well in predicting prognosis and could be served as an independent indicator in ACC. GSEA revealed that gene sets correlated with biological processes including cell cycle, DNA replication, base excision repair, and P53 signaling pathway were highly enriched in high-risk group. In addition, we discovered that the expressional levels of hub genes were linked to six immune cells’ infiltration in ACC tumor. ssGSEA revealed that contents of most immune cells significantly decreased in the high-risk group. In conclusion, the novel ferroptosis risk signature could be useful in predicting prognosis and reflecting immune infiltration in ACC. It also brings us new insights into the possible value of targeting ferroptosis during the therapy of ACC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinyuan Shi ◽  
Pu Wu ◽  
Lei Sheng ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC), accounting for more than 80% of all cases. Ferroptosis is a novel iron-dependent and Reactive oxygen species (ROS) reliant type of cell death which is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in PTC remains unclear. This study aims at exploring the expression of ferroptosis-related genes (FRG) and their prognostic values in PTC. Methods A ferroptosis-related gene signature was constructed using lasso regression analysis through the PTC datasets of the Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT database. Finally, SDG were test in clinical PTC specimens and normal thyroid tissues. Results LASSO regression model was utilized to establish a novel FRG signature with 10 genes (ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF, TFRC, TXNRD1) to predicts the prognosis of PTC, and the patients were separated into high-risk and low-risk groups by the risk score. The high-risk group had poorer survival than the low-risk group (p < 0.001). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Multivariate regression analysis identified the prognostic signature-based risk score was an independent prognostic indicator for PTC. The functional roles of the DEGs in the TGCA PTC cohort were explored using GO enrichment and KEGG pathway analyses. Immune related analysis demonstrated that the most types of immune cells and immunological function in the high-risk group were significant different with those in the low-risk group. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) verified the SDG have differences in expression between tumor tissue and normal thyroid tissue. In addition, cell experiments were conducted to observe the changes in cell morphology and expression of signature’s genes with the influence of ferroptosis induced by sorafenib. Conclusions We identified differently expressed FRG that may involve in PTC. A ferroptosis-related gene signature has significant values in predicting the patients’ prognoses and targeting ferroptosis may be an alternative for PTC’s therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xi Chen ◽  
Lijun Yan ◽  
Yu Lu ◽  
Feng Jiang ◽  
Ni Zeng ◽  
...  

Adrenocortical carcinoma (ACC) is a rare malignancy with dismal prognosis. Hypoxia is one of characteristics of cancer leading to tumor progression. For ACC, however, no reliable prognostic signature on the basis of hypoxia genes has been built. Our study aimed to develop a hypoxia-associated gene signature in ACC. Data of ACC patients were obtained from TCGA and GEO databases. The genes included in hypoxia risk signature were identified using the Cox regression analysis as well as LASSO regression analysis. GSEA was applied to discover the enriched gene sets. To detect a possible connection between the gene signature and immune cells, the CIBERSORT technique was applied. In ACC, the hypoxia signature including three genes (CCNA2, COL5A1, and EFNA3) was built to predict prognosis and reflect the immune microenvironment. Patients with high-risk scores tended to have a poor prognosis. According to the multivariate regression analysis, the hypoxia signature could be served as an independent indicator in ACC patients. GSEA demonstrated that gene sets linked to cancer proliferation and cell cycle were differentially enriched in high-risk classes. Additionally, we found that PDL1 and CTLA4 expression were significantly lower in the high-risk group than in the low-risk group, and resting NK cells displayed a significant increase in the high-risk group. In summary, the hypoxia risk signature created in our study might predict prognosis and evaluate the tumor immune microenvironment for ACC.


2022 ◽  
Author(s):  
Cong Zhang ◽  
Cailing Zeng ◽  
Shaoquan Xiong ◽  
Zewei Zhao ◽  
Guoyu Wu

Abstract Background: Colorectal cancer (CRC) is a heterogeneous disease and one of the most common malignancies in the world. Previous studies have found that mitophagy plays an important role in the progression of colorectal cancer. This study is aimed to investigate the relationship between mitophagy-related genes and the prognosis of patients with CRC.Methods: Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were used to establish the prognostic signature composed of mitophagy related genes. Kaplan-Meier curve and receiver operating characteristic (ROC) curve were used to analyze patient survival and verify the predictive accuracy of the signature, respectively. Construction of a nomogram prognostic prediction model was based on risk scores and clinicopathological parameters. Using the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. Results: A total of 44 mitophagy-driven genes connected with CRC survival were identified, and prognostic signature was established based on the expression of 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter than that of the low-risk group among the TCGA cohort (median OS 67.3 months vs not reached, p=0.00059) and two independent cohorts from GEO (median OS in GSE17536: 54.0 months vs not reached, p=0.0082; in GSE245: 7.7 months vs not reached, p=0.025). ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI=0.71-0.83) and more robust predictive sensitivity and specificity. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more abundant in the high-risk group. Furthermore, patients in the high-risk group were more sensitive to potential targeted therapies, including Motesanib, ATRA, Olaparib, Selumetinib, AZD8055 and immunotherapy. Conclusion: In conclusion, we constructed and validated a novel mitophagy related gene signature that can be used as an independent prognostic biomarker for CRC, and may lead to better stratification and selection of precise treatment for CRC patients.


2021 ◽  
Author(s):  
Jinyuan Shi ◽  
Pu Wu ◽  
Lei Sheng ◽  
Wei Sun ◽  
Hao Zhang

Abstract Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer (TC), accounting for more than 80% of all cases. Ferroptosis is a novel iron-dependent and Reactive oxygen species (ROS) reliant type of cell death which is distinct from the apoptosis, necroptosis and pyroptosis. Considerable studies have demonstrated that ferroptosis is involved in the biological process of various cancers. However, the role of ferroptosis in PTC remains unclear. This study aims at exploring the expression of ferroptosis-related genes (FRG) and their prognostic values in PTC. Methods: A ferroptosis-related gene signature was constructed using lasso regression analysis through the PTC datasets of the Cancer Genome Atlas (TCGA). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the bioinformatics functions of significantly different genes (SDG) of ferroptosis. Additionally, the correlations of ferroptosis and immune cells were assessed through the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT database. Finally, SDG were test in clinical PTC specimens and normal thyroid tissues. Results: LASSO regression model was utilized to establish a novel FRG signature with 10 genes (ANGPTL7, CDKN2A, DPP4, DRD4, ISCU, PGD, SRXN1, TF, TFRC, TXNRD1) to predicts the prognosis of PTC, and the patients were separated into high-risk and low-risk groups by the risk score. The high-risk group had poorer survival than the low-risk group(p<0.001). Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Multivariate regression analysis identified the prognostic signature-based risk score was an independent prognostic indicator for PTC. The functional roles of the DEGs in the TGCA PTC cohort were explored using GO enrichment and KEGG pathway analyses. Immune related analysis demonstrated that the most types of immune cells and immunological function in the high-risk group were significant different with those in the low-risk group. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) verified the SDG have differences in expression between tumor tissue and normal thyroid tissue. Conclusions: We identified differently expressed FRG that may involve in PTC. A ferroptosis-related gene signature has significant values in predicting the patients’ prognoses and targeting ferroptosis may be an alternative for PTC’s therapy.


2021 ◽  
Author(s):  
Zhenyu Zhao ◽  
Boxue He ◽  
Qidong Cai ◽  
Pengfei Zhang ◽  
Xiong Peng ◽  
...  

Abstract Background: Lung adenocarcinoma (LUAD) accounts for a majority of cancer-related deaths worldwide annually. A recent study shows that immunotherapy is an effective method of LUAD treatment, and tumor mutation burden (TMB) was associated with the immune microenvironment and affected the immunotherapy. Exploration of the gene signature associated with tumor mutation burden and immune infiltrates in predicting prognosis in lung adenocarcinoma in this study, we explored the correlation of TMB with immune infiltration and prognosis in LUAD.Materials and Methods: In this study, we firstly got mutation data and LUAD RNA-Seq data of the LUAD from The Cancer Genome Atlas (TCGA), and according to the TMB we divided the patients into high/low-TMB levels groups. The gene ontology (GO) pathway enrichment analysis and KOBAS-Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were utilized to explore the molecular function of the differentially expressed genes (DEGs) between the two groups. The function enrichment analyses of DEGs were related to the immune pathways. Then, the ESTIMATE algorithm, CIBERSORT, and ssGSEA analysis were utilized to identify the relationship between TMB subgroups and immune infiltration. According to the results, Venn analysis was utilized to select the immune-related genes in DEGs. Univariate and Lasso Cox proportional hazards regression analyses were performed to construct the signature which positively associated with the immune infiltration and affected the survival. Finally, we verified the correlation between the signature and immune infiltration. Result: The exploration of the immune infiltration suggested that high-TMB subgroups positively associated with the high level of immune infiltration in LUAD patients. According to the TMB-related immune signature, the patients were divided into High/Low-risk groups, and the high-risk group was positively associated with poor prognostic. The results of the PCA analysis confirmed the validity of the signature. We also verified the effectiveness of the signature in GSE30219 and GSE72094 datasets. The ROC curves and C-index suggested the good clinical application of the TMB-related immune signature in LUAD prognosis. Another result suggested that the patients of the high-risk group were positively associated with higher TMB levels, PD-L1expression, and immune infiltration levels.Conclusion: In conclusion, our signature provides potential biomarkers for studying aspects of the TMB in LUAD such as TMB affected immune microenvironment and prognosis. This signature may provide some biomarkers which could improve the biomarkers of PD-L1 immunotherapy response and were inverted for the clinical application of the TMB in LUAD. LUAD male patients with higher TMB-levels and risk scores may benefit from immunotherapy. The high-risk patients along with higher PD-L1 expression of the signature may suitable for immunotherapy and improve their survival by detecting the TMB of LUAD.


2021 ◽  
Author(s):  
Shaopei Ye ◽  
Wenbin Tang ◽  
Ke Huang

Abstract Background: Autophagy is a biological process to eliminate dysfunctional organelles, aggregates or even long-lived proteins. . Nevertheless, the potential function and prognostic values of autophagy in Wilms Tumor (WT) are complex and remain to be clarifed. Therefore, we proposed to systematically examine the roles of autophagy-associated genes (ARGs) in WT.Methods: Here, we obtained differentially expressed autophagy-related genes (ARGs) between healthy and Wilms tumor from Therapeutically Applicable Research To Generate Effective Treatments(TARGET) and The Cancer Genome Atlas (TCGA) database. The functionalities of the differentially expressed ARGs were analyzed using Gene Ontology. Then univariate COX regression analysis and multivariate COX regression analysis were performed to acquire nine autophagy genes related to WT patients’ survival. According to the risk score, the patients were divided into high-risk and low-risk groups. The Kaplan-Meier curve demonstrated that patients with a high-risk score tend to have a poor prognosis.Results: Eighteen DEARGs were identifed, and nine ARGs were fnally utilized to establish the FAGs based signature in the TCGA cohort. we found that patients in the high-risk group were associated with mutations in TP53. We further conducted CIBERSORT analysis, and found that the infiltration of Macrophage M1 was increased in the high-risk group. Finally, the expression levels of crucial ARGs were verifed by the experiment, which were consistent with our bioinformatics analysis.Conclusions: we emphasized the clinical significance of autophagy in WT, established a prediction system based on autophagy, and identified a promising therapeutic target of autophagy for WT.


2021 ◽  
Author(s):  
Wei Song ◽  
Weiting Kang ◽  
Qi Zhang

Abstract Objective: This study aimed to construct a ferroptosis-related gene signature to predict clinical prognosis and tumor immunity in patients with kidney renal clear cell carcinoma (KIRC).Methods: The mRNA expression profiles and corresponding clinical data of KIRC patients were downloaded from The Cancer Genome Atlas (TCGA), which were randomly divided into training (398 patients) and validation set (132 patients). The iron death related (IDR) prediction model was constructed based on training set and 60 ferroptosis-related genes from previous literatures, followed by prognostic performance evaluation and verification using the validation set. Moreover, functional enrichment, immune cell infiltration, metagene clusters correlation, and TIDE scoring analyses were performed. Results: In total, 23 ferroptosis-related genes were significantly associated with overall survival (OS). The IDR prediction model (a 10-gene signature) was then constructed to stratify patients into two risk groups. The OS of KIRC patients with high-risk scores was significantly shorter than those with low-risk scores. Moreover, the risk score was confirmed as an independent prognostic predictor for OS. The positive and negative correlated genes with this model were significantly enriched in p53 signaling pathway, and cGMP-PKG signaling pathway. The patients in the high-risk group had higher ratios of plasma cells, T cells CD8, and T cells regulatory Tregs. Furthermore, IgG, HCK, LCK, and Interferson metagenes were significantly correlated with risk score. By TIDE score analysis, patients in the high-risk group could benefit from immunotherapy.Conclusions: The identified ferroptosis-related gene signature is significantly correlated with clinical prognosis and immune immunity in KIRC patients.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e16073-e16073
Author(s):  
Weitao Zhuang ◽  
Xiao-song Ben ◽  
Dan Tian ◽  
Zihao Zhou ◽  
Gang Chen ◽  
...  

e16073 Background: Esophageal squamous cell cancer (ESCC) is a malignant tumor with a poor 5-year relative survival. A prognosis prediction signature associated with DNA Damage Response (DDR) genes in ESCC was explored in this study. Methods: The clinical and gene expression profiles of ESCC patients were downloaded from the GEO and TCGA database. Univariate Cox regression and 1000 iterations of 10-fold cross-validation of LASSO Cox regression with binomial deviance minimization criteria were used to identify DDR genes as potential object and a prognostic signature for ESCC survival prediction, followed by validation of the signature via TCGA cohort and identification of independent prognostic predictors. A nomogram for prognosis prediction was built and Gene Set Enrichment Analysis (GSEA) was performed to further understand the underlying molecular mechanisms. Results: A signature of 8 DDR genes were constructed as being significantly associated with overall survival (OS) among patients with esophageal squamous cell carcinoma. The pronostic signature stratified ESCC patients into low- vs high-risk groups in terms of OS in the training set, testing set and the validation cohorts, and remained as an independent prognostic factor in multivariate analyses (hazard ratio (HR) in training set, 0.17 [95% CI, 0.09-0.35; P < 0 .001], HR in testing set, 0.38 [95% CI, 0.16-0.93; P = 0.029], HR in discovery cohort, 0.171 [95% CI, 0.03-0.48; P < 0 .001]) after adjusting for clinicopathological factors. The 8-DDR gene signature achieved a higher accuracy (C-index, 0.69; AUCs for 1-, 3- and 5-year OS, 0.74, 0.77 and 0.76, respectively) than 7 previously reported multigene signatures (C-index range, 0.53 to 0.60; AUCs range, 0.55to 0.66, 0.54 to 0.64 and 0.62 to 0.66, respectively) for estimation of survival in comparable cohorts. A nomogram incorporating tumor location, grade, adjuvant therapy and signature-based risk group showed better predictive performance for 1- and 3- year survival than for 5 year survival. Moreover, GSEA revealed that the DNA repair was more prominently enriched in the high-risk group while the low-risk group had not enrichment of any process (P > 0.05 for all). Conclusions: Taken together, our study identified 8 DDR genes related to the prognosis of ESCC patients, and constructed a robust prognostic signature to effectively stratify ESCC patients with different survival rates, which may help recognize high-risk patients potentially benefiting from more aggressive treatment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4848-4848
Author(s):  
Michele Malagola ◽  
Crisitina Skert ◽  
Marco Vignetti ◽  
Alfonso Piciocchi ◽  
Giovanni Martinelli ◽  
...  

Abstract Abstract 4848 Objectives: the prognosis of patients with cytogenetically normal acute myeloid leukemia (CN-AML) is highly variable and can be influenced by several clinical and biological variables. Nevertheless, some biological data may be conflicting and difficult to combine with the clinical ones. Methods: in order to propose a simple scoring system, we retrospectively analysed the clinical data of 337 patients newly diagnosed with CN-AMLs, aged less than 65 years, consecutively treated in eleven hematological Italian Centres from 1990 to 2005. Two hundred nineteen patients (65%) received a fludarabine-based induction regimen. All the other patients received a conventional induction regimen, including cytarabine, one anthracycline with or without etoposide. Univariate and multivariate analysis on event free survival and overall survival (EFS and OS) were performed. Patients addressed to allogeneic stem cell transplantation were censored at the time of transplant. Factors found to be significant in univariate analysis were tested in multivariate analysis. A numerical score was derived from the regression coefficients of each independent prognostic variable. The Prognostic Index Score (PIS) for each patient was then calculated by totalling up the score of each independent variable. Patients could thus be stratified into low-risk (score = 0–1), intermediate-risk (score = 2) and high-risk group (score grater than 3). The score obtained in this group of patients (training set) was then tested on 193 patients with newly diagnosed with CN-AMLs, aged less than 65 years, enrolled in the GIMEMA LAM99p clinical trial (validation set). Results: the clinical variables that were independent prognostic factors on EFS in the training set of patients were: age > 50 yrs (regression coefficient: 0.39, HR 1.5, score = 1), secondary AML (regression coefficient: 0.90, HR 2.5, score = 2) and WBC > 20 × 10^9/L (regression coefficient: 0.83, HR 2.3, score = 2). For what concerns the OS, the same variables showed the followings statistical data: age > 50 yrs (regression coefficient: 0.48, HR 1.6, score = 1), secondary AML (regression coefficient: 0.99, HR 2.7, score = 2) and WBC > 20 × 10^ 9/L (regression coefficient: 0.87, HR 2.4, score = 2). In the training set of patients, the median EFS was 22, 12 and 8 months in the low, intermediate and high-risk group (p<0.0001). The median OS was not reached in the low-risk group and was 20 and 10 months in the intermediate and high-risk group (p<0.0001). In the validation set of patients, the median EFS was 66, 16 and 3 months in the low, intermediate and high-risk group (p<0.0001). The median OS was 66, 16 and 4 months in the low, intermediate and high-risk group (p<0.0001). Conclusions: this simple and reproducible prognostic score may be useful for clinical-decision making in newly diagnosed patients with CN-AMLs, aged less than 65 yrs. Moreover, it can be clinically useful when the molecular prognostic markers are lacking (e.g. in emerging laboratories of some developing countries) or give contradictory results. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document