scholarly journals An Online Semisupervised Learning Model for Pedestrians’ Crossing Intention Recognition of Connected Autonomous Vehicle Based on Mobile Edge Computing Applications

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shicai Ji ◽  
Ying Peng ◽  
Hongjia Zhang ◽  
Shengbo Wu

One of the major challenges that connected autonomous vehicles (CAVs) are facing today is driving in urban environments. To achieve this goal, CAVs need to have the ability to understand the crossing intention of pedestrians. However, for autonomous vehicles, it is quite challenging to understand pedestrians’ crossing intentions. Because the pedestrian is a very complex individual, their intention to cross the street is affected by the weather, the surrounding traffic environment, and even his own emotions. If the established street crossing intention recognition model cannot be updated in real time according to the diversity of samples, the efficiency of human-machine interaction and the interaction safety will be greatly affected. Based on the above problems, this paper established a pedestrian crossing intention model based on the online semisupervised support vector machine algorithm (OS3VM). In order to verify the effectiveness of the model, this paper collects a large amount of pedestrian crossing data and vehicle movement data based on laser scanner, and determines the main feature components of the model input through feature extraction and principal component analysis (PCA). The comparison results of recognition accuracy of SVM, S3VM, and OS3VM indicate that the proposed OS3VM model exhibits a better ability to recognize pedestrian crossing intentions than the SVM and S3VM models, and the accuracy achieves 94.83%. Therefore, the OS3VM model can reduce the number of labeled samples for training the classifier and improve the recognition accuracy.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1776 ◽  
Author(s):  
Hongjia Zhang ◽  
Yanjuan Liu ◽  
Chang Wang ◽  
Rui Fu ◽  
Qinyu Sun ◽  
...  

Accurate identification of pedestrian crossing intention is of great significance to the safe and efficient driving of future fully automated vehicles in the city. This paper focuses on pedestrian intention recognition on the basis of pedestrian detection and tracking. A large number of natural crossing sequence data of pedestrians and vehicles are first collected by a laser scanner and HD camera, then 1980 effective crossing samples of pedestrians are selected. Influencing parameter sets of pedestrian crossing intention are then obtained through statistical analysis. Finally, long short-term memory network with attention mechanism (AT-LSTM) model is proposed. Compared with the support vector machine (SVM) model, results show that when the pedestrian crossing intention is recognized 0 s prior to crossing, the recognition accuracy of the AT-LSTM model for pedestrian crossing intention is 96.15%, which is 6.07% higher than that of SVM model; when the pedestrian crossing intention is recognized 0.6 s prior, the recognition accuracy of AT-LSTM model is 90.68%, which is 4.85% higher than that of the SVM model. The determination of pedestrian crossing intention parameter set and the more accurate recognition of pedestrian intention provided in this work provide a foundation for future fully automated driving vehicles.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 701 ◽  
Author(s):  
Beige Ye ◽  
Taorong Qiu ◽  
Xiaoming Bai ◽  
Ping Liu

In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving fatigue recognition method based on sample entropy (SE) and kernel principal component analysis (KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong non-linear processing capability. By using support vector machine (SVM) classifier, the proposed method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy (FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with KPCA. Experiment results show that the method is effective.


Author(s):  
Qingmi Yang

The parameter optimization of Support Vector Machine (SVM) has been a hot research direction. To improve the optimization rate and classification performance of SVM, the Principal Component Analysis (PCA) - Particle Swarm Optimization (PSO) algorithm was used to optimize the penalty parameters and kernel parameters of SVM. PSO which is to find the optimal solution through continuous iteration combined with PCA that eliminates linear redundancy between data, effectively enhance the generalization ability of the model, reduce the optimization time of parameters, and improve the recognition accuracy. The simulation comparison experiments on 6 UCI datasets illustrate that the excellent performance of the PCA-PSO-SVM model. The results show that the proposed algorithm has higher recognition accuracy and better recognition rate than simple PSO algorithm in the parameter optimization of SVM. It is an effective parameter optimization method.


Author(s):  
David Freire-Obregón ◽  
Modesto Castrillón-Santana

Facial expression recognition is one of the most challenging research areas in the image recognition field and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future. We are talking about quantifying the emotion at low computation cost and high accuracy. For this aim, we have used a new support vector machine (SVM)-based approach that integrates a weighted combination of local binary patterns (LBPs)-and principal component analysis (PCA)-based approaches. Furthermore, we construct this smile detector considering the evolution of the emotion along its natural life cycle. As a consequence, we achieved both low computation cost and high performance with video sequences.


2021 ◽  
Vol 40 ◽  
pp. 03008
Author(s):  
Madhu M. Nashipudimath ◽  
Pooja Pillai ◽  
Anupama Subramanian ◽  
Vani Nair ◽  
Sarah Khalife

Voice recognition plays a key function in spoken communication that facilitates identifying the emotions of a person that reflects within the voice. Gender classification through speech is a popular Human Computer Interaction (HCI) method on account that determining gender through computer is hard. This led to the development of a model for "Voice feature extraction for Emotion and Gender Recognition". The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have specific vocal traits because of their acoustical and perceptual variations along with a variety of emotions which bring their own specific perceptions. In order to explore this area, feature extraction requires pre-processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre-processing using Voice Activity Detector(VAD), feature extraction using Mel-Frequency Cepstral Coefficient(MFCC), feature reduction by Principal Component Analysis(PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in healthcare sector, virtual assistants, security purposes and other fields related to Human Machine Interaction domain.


Author(s):  
Chirawat Wattanapanich ◽  
Hong Wei ◽  
Wijittra Petchkit

A gait recognition framework is proposed to tackle the challenge of unknown camera view angles as well as appearance changes in gait recognition. In the framework, camera view angles are firstly identified before gait recognition. Two compact images, gait energy image (GEI) and gait modified Gaussian image (GMGI), are used as the base gait feature images. Histogram of oriented gradients (HOG) is applied to the base gait feature images to generate feature descriptors, and then a final feature map after principal component analysis (PCA) operations on the descriptors are used to train support vector machine (SVM) models for individuals. A set of experiments are conducted on CASIA gait database B to investigate how appearance changes and unknown view angles affect the gait recognition accuracy under the proposed framework. The experimental results have shown that the framework is robust in dealing with unknown camera view angles, as well as appearance changes in gait recognition. In the unknown view angle testing, the recognition accuracy matches that of identical view angle testing in gait recognition. The proposed framework is specifically applicable in personal identification by gait in a small company/organization, where unintrusive personal identification is needed.


Author(s):  
Vani Nair ◽  
Pooja Pillai ◽  
Anupama Subramanian ◽  
Sarah Khalife ◽  
Dr. Madhu Nashipudimath

Voice recognition plays a key role in spoken communication that helps to identify the emotions of a person that reflects in the voice. Gender classification through speech is a widely used Human Computer Interaction (HCI) as it is not easy to identify gender by computer. This led to the development of a model for “Voice feature extraction for Emotion and Gender Recognition”. The speech signal consists of semantic information, speaker information (gender, age, emotional state), accompanied by noise. Females and males have different voice characteristics due to their acoustical and perceptual differences along with a variety of emotions which convey their own unique perceptions. In order to explore this area, feature extraction requires pre- processing of data, which is necessary for increasing the accuracy. The proposed model follows steps such as data extraction, pre- processing using Voice Activity Detector (VAD), feature extraction using Mel-Frequency Cepstral Coefficient (MFCC), feature reduction by Principal Component Analysis (PCA) and Support Vector Machine (SVM) classifier. The proposed combination of techniques produced better results which can be useful in the healthcare sector, virtual assistants, security purposes and other fields related to the Human Machine Interaction domain. 


2020 ◽  
Vol 10 (16) ◽  
pp. 5655
Author(s):  
Miguel Ángel de Miguel ◽  
Francisco Miguel Moreno ◽  
Pablo Marín-Plaza ◽  
Abdulla Al-Kaff ◽  
Martín Palos ◽  
...  

This work presents a novel platform for autonomous vehicle technologies research for the insurance sector. The platform has been collaboratively developed by the insurance company MAPFRE-CESVIMAP, Universidad Carlos III de Madrid and INSIA of the Universidad Politécnica de Madrid. The high-level architecture and several autonomous vehicle technologies developed using the framework of this collaboration are introduced and described in this work. Computer vision technologies for environment perception, V2X communication capabilities, enhanced localization, human–machine interaction and self awareness are among the technologies which have been developed and tested. Some use cases that validate the technologies presented in the platform are also presented; these use cases include public demonstrations, tests of the technologies and international competitions for self-driving technologies.


Author(s):  
Jiajia Chen ◽  
Wuhua Jiang ◽  
Pan Zhao ◽  
Jinfang Hu

Purpose Navigating in off-road environments is a huge challenge for autonomous vehicles, due to the safety requirement, the effects of noises and non-holonomic constraints of vehicle. This paper aims to describe a path planning method based on fuzzy support vector machine (FSVM) and general regression neural network (GRNN) that is able to provide a solution path for the autonomous vehicle navigating in the off-road environments. Design/methodology/approach The authors decompose the path planning problem into three steps. In the first step, A* algorithm is applied to obtain the positive and negative samples. In the second step, the authors use a learning approach based on radial basis function kernel FSVM to maximize the safety margin for driving, and the fuzzy membership is designed based on GRNN which can help to resolve the problem that the traditional path planning method is easily influenced by noises or outliers. In the third step, the Bezier interpolation algorithm is used to smooth the path. The simulations are designed to verify the parameters of the path planning algorithm. Findings The method is implemented on autonomous vehicle and verified against many outdoor scenes. Road test indicates that the proposed method can produce a flexible, smooth and safe path with good anti-jamming performance. Originality/value This paper applied a new path planning method based on GRNN-FSVM for autonomous vehicle navigating in off-road environments. GRNN-FSVM can reduce the effects of outliers and maximize the safety margin for driving, the generated path is smooth and safe, while satisfying the constraint of vehicle kinematic.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5124
Author(s):  
Yunan Chen ◽  
Ruifang Yang ◽  
Nanjing Zhao ◽  
Wei Zhu ◽  
Xiaowei Chen ◽  
...  

The establishment and development of a set of methods of oil accurate recognition in a different environment are of great significance to the effective management of oil spill pollution. In this work, the concentration-emission matrix (CEM) is formed by introducing the concentration dimension. The principal component analysis (PCA) is applied to extract the spectral feature. The classification methods, such as Probabilistic Neural Networks (PNNs) and Genic Algorithm optimization Support Vector Machine (SVM) parameters (GA-SVM), are used for oil identification and the recognition accuracies of the two classification methods are compared. The results show that the GA-SVM combined with PCA has the highest recognition accuracy for different oils. The proposed approach has great potential in rapid and accurate oil source identification.


Sign in / Sign up

Export Citation Format

Share Document