scholarly journals Experimental Research on Bending Bearing Capability of Grouted Double Mortise-Tenon Joint for Prefabricated Metro Station Structure

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiuren Yang ◽  
Fang Lin ◽  
Meiqun Huang

The grouted mortise-tenon joint, invented as the connection between the large prefabricated elements, is the most important component in the prefabricated underground structures. This paper conducts analysis of load-carrying capacity performance and failure mode with 1 : 1 prototype test in key working direction of different double mortise-tenon joint types for the prefabricated metro station. The resistance moment is developed and used to analyze the bending bearing characteristic curve, and the corresponding test results of each stage of the characteristic curve are described in detail. In addition, the bending bearing performance of different types of double-tenon joints under different load conditions is compared. The test results clarify the ultimate failure mode of double-tenon joint and the variable bearing capacity characteristics of the joint with the increase in axial load and explain the bearing performance of each stage. It is also found the auxiliary pretightening device is helpful to delay the appearance of cracks and improve the bearing capacity, especially when it is set on the tension side. The research results have important application value for the joint design of prefabricated metro station structures.


2011 ◽  
Vol 311-313 ◽  
pp. 1941-1944
Author(s):  
Gui Bing Li ◽  
Yu Gang Guo ◽  
Xiao Yan Sun

intermediate crack-induced debondingis one of the most dominant failure modes in FRP-strengthened RC beams. Different code models and provisions have been proposed to mitigateintermediate crack-induced debondingfailure.However, these models and provisions can not mitigate this failure mode effectively. Recnetly, new models have been proposed to solve this problem. Out of all the existing models, four typical ones are investigated in the current study. A comprehensivecomparison among these models is carried out in order to evaluate their performance and accuracy. Test results offlexural specimens with intermediate crack-induced debonding failurecollected from the existing literature are used in the current comparison. The effectivenessand accuracy of each model have been evaluated based on these experimental results. It is shown that the current modals are all conservative and inadequite to effectively mitigate intermediate crack-induced debonding in flexurally strengthened members.



2019 ◽  
Vol 14 (02) ◽  
pp. 2050007
Author(s):  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Shaohua Zhang ◽  
Gaodong Xu

In this study, two types of novel box connections were developed to connect precast concrete (PC) columns and to ensure load transfer integrity. Cyclic loading tests were conducted to investigate the seismic behavior of the PC columns with proposed connections as well as the feasibility and reliability of novel box connections. The failure mode, hysteretic behavior, bearing capacity, ductility, stiffness degradation and energy dissipation were obtained and discussed. The test results indicated that the all PC columns exhibited the ductile flexural failure mode and that the proposed connections could transfer the force effectively. The adoption of novel box connections could improve the deformation capacity and energy dissipation capacity of PC columns. A higher axial compression ratio could enhance the bearing capacity of PC column with proposed connection but would significantly deteriorate the ductility and energy dissipation capacity. Finite element models were developed and the feasibility of the models was verified by the comparison with the test results.



2011 ◽  
Vol 255-260 ◽  
pp. 2751-2755
Author(s):  
Chun Lei Zhang ◽  
Qing Song Liu ◽  
Jin Bao Liu

In order to improve the bearing capacity of dredged sediment dump pond for succeeding foundation reinforcement construction, upper layer was placed with a layer of cement solidified crust (CSC). For the special double layer foundation, field plate load tests were conducted to study the behaviors of failure mode, deformation and ultimate bearing capacity. Test results show the failure mode of the double layer foundation takes punch failure mode, the settlement around 10-15cm, the failure angle around 33-36 degree, the ultimate bearing capacities have a lineal relationship with the unconfined compressive strength and thickness of CSC, respectively.



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lidan Mei ◽  
Nan Guo ◽  
Hongliang Zuo ◽  
Ling Li ◽  
Guodong Li

In recent years, extensive attention has been drawn to prefabricated buildings, particularly wood construction. Glulam beams are the major supporting components of modern wood buildings. Since the force arm is the most critical indicator to evaluate the resistance moment of the glulam beam string structure, it is necessary to further study the influence of the force arm on the mechanical properties of the glulam beam string structure. We tested the flexural performance of 15 prestressed glulam beams, which were divided into two groups (A and B) to, respectively, research the influences of the string arm and the end arm on the bearing capacity, failure mode, stress distribution, and deformation performance of glulam beams. The results showed that when the height of the end arm remained constant and the string arm increased from 90 mm to 130 mm and 170 mm, the bearing capacity of the beam increased by 6.77% and 17.22%, respectively. Moreover, as the depth of the compression zone of the glued timber beam gradually increased, the failure mode of the beam changed from the brittle tension failure of the beam bottom to the ductile compression failure of the beam top. When the height of the string arm remained constant and the end arm increased from 10 mm to 30 mm and 50 mm, the bearing capacity of the beam increased by 4.27% and 8.13%, respectively. The beam had no significant change in the failure mode, while it could bear the stress more uniformly. Based on the experimental results and principles of equilibrium, moment equilibrium, and similar triangle, we calculated the ultimate bearing capacity of the glulam beam and proposed a design method for durable wood structures.



2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tiecheng Wang ◽  
Xiao Liu ◽  
Hailong Zhao

Based on tests on six L-shaped RC columns with 500 MPa steel bars, the effect of axial compression ratios and stirrup spacing on failure mode, bearing capacity, displacement, and curvature ductility of the specimens is investigated. Test results show that specimens with lower axial load and large stirrup characteristic value (larger than about 0.35) are better at ductility and seismic performance, while specimens under high axial load or with a small stirrup characteristic value (less than about 0.35) are poorer at ductility; L-shaped columns with 500 MPa steel bars show better bearing capacity and ductility in comparison with specimens with HRB400 steel bars.



2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Kexin Zhang ◽  
Tianyu Qi ◽  
Zhimin Zhu ◽  
Xingwei Xue

In this paper, a new polyurethane-cement composite (PUC) material is used to reinforce a 25-year hollow slab bridge. PUC material is composed of polyurethane and cement, which has good mechanical properties. After pouring PUC material at the bottom of the hollow slabs, the traffic can be restored in a short time. Ultimate bearing capacity was discussed based on the concrete structures. The failure mode of the reinforced beam depends on the PUC material. The strengthening process includes surface treatment of concrete, formwork erection and polyurethane cement pouring. In order to verify the effectiveness of PUC reinforced bridges, load tests were carried out before and after reinforcement. The test results showed that PUC could remove the bridge load and increase the stiffness of the hollow slabs.



2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qingfu Li ◽  
Wei Guo ◽  
Chenhui Liu ◽  
Yihang Kuang ◽  
Huitao Geng

In this paper, the flexural characteristics of stainless steel (SS) reinforced concrete beams are studied and analyzed. We mainly focus on their crack mode, failure mode, load-deflection curve, and bearing capacity. Six beams with test parameters, including the diameter of reinforcement, the type of the reinforcement, and the stirrup spacing, were tested in 4-point bending. The test results indicate that the failure mode of SS reinforced concrete beam can be divided into three stages: elastic stage, cracking stage, and failure stage. The midspan section deformation of SS reinforced concrete beam conforms to the assumption of plane section. Under the same reinforcement condition, the normal section and the oblique section bearing capacities of the SS reinforced concrete beams are significantly higher than those of the ordinary reinforced concrete beams. In addition, the prediction of cracking moment and bearing capacity calculated by ACI 318-14 and GB 50010-2010 was also evaluated. The calculation results of the two codes were safe and conservative, and GB 50010-2010 provided more accurate prediction of cracking moments. Furthermore, to verify the reliability of the test results, finite element models were established and the analytical results corroborated well with the test results.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiuren Yang ◽  
Fang Lin ◽  
Meiqun Huang

The grouted mortise-tenon joint, invented as the connection between the large prefabricated components, is the key to the prefabricated underground structures, and the double-tenon joint is most widely used in the prefabricated metro station structure. This paper conducts characteristic analysis of bending stiffness with a 1 : 1 prototype test in key working direction of different joint types for grouted double mortise-tenon joint. The results show that the double-tenon joint is characteristic of variable stiffness under different loads. Change laws of double-tenon joint bending stiffness without and with auxiliary pretightening device in tension side and compression side are also discussed. The correlations for calculating double-tenon joint bending stiffness with various axial loads and bending moments are derived at last, which offers the theory foreshadowing of similar joints.



2011 ◽  
Vol 250-253 ◽  
pp. 1498-1502 ◽  
Author(s):  
Zhong Xian Guo ◽  
Jun Liu ◽  
Yong Shun Qi

Basing on filed loading test results, the influences of cushion stiffness to the playing process of pile head and soil surface pressure in composite foundation was analyzed. Cushion stiffness will affect bearing capacity and failure mode of composite foundation with rammed soil-cement pile, which is applied in a relatively good ground. It point out that the cushion stiffness must be considered when loading test used to determine the bearing capacity of composite foundation with rammed soil-cement pile.



2022 ◽  
Vol 2160 (1) ◽  
pp. 012038
Author(s):  
Weifeng Xu ◽  
Xi Wang ◽  
Yuying Shangguan ◽  
Yanhe Li

Abstract In order to study the paste failure mode and ultimate shear bonding force of CFRP plate-steel interface anchor bonding, a single-sided shear test was carried out on a total of 15 carbon fiberboard (CFRP)-steel composite beam structure specimens in five groups. The test results show that for organic adhesives, the uniform anchoring method can improve the bearing capacity of the construction; for organic adhesives, the ultimate shearing when the specimen is peeled with inorganic glue is used. The bonding capacity is greater than that of specimens with organic adhesives.



Sign in / Sign up

Export Citation Format

Share Document