scholarly journals Mechanical Properties of Sandstone Roof and Surrounding-Rock Control of Mining Roadways Subject to Reservoir Water Disturbance

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Bin Ma ◽  
Zaiqiang Hu ◽  
Xingzhou Chen ◽  
Lili Chen ◽  
Wei Du

Sandstone-roofed roadways are susceptible to deformation and failure caused by reservoir-water-induced disturbances, thereby compromising human safety. Using rock-mechanics testing techniques, numerical simulations, and engineering principles, this study investigates the strength, deformation, and pore-structure characteristics of sandstone roofs as well as means to support the surrounding rock structure. The results obtained in this study reveal that the residual strain is proportional to the pore-water pressure, which, in turn, causes a significant reduction in the elastic modulus during the unloading phase. Furthermore, an increase in the pore-water pressure causes the shear failure of specimens in compression. The delay between crack initiation and specimen-volume expansion decreases. Moreover, the specimen demonstrates increased deformation and failure responses to changes in the confining pressure, thereby resulting in accelerated conversion. Changes in water inflow can be correlated to crack initiation, propagation, and fracture. This water inflow gradually increases with an increase in the osmotic pressure. Correspondingly, the volumetric strain required for maximum water inflow undergoes a gradual decrease. The increased water inflow can be considered a precursor to specimen failure. In addition, fractures in the surrounding rock structures are mainly caused by joint dislocations. The increase in pore pressure promotes the development of dislocation fractures in the deep surrounding rocks. Subsequently, these fractures overlap with their open counterparts to form large fractures; this increases the roadway-roof subsidence and layer separation of the shallow surrounding rocks, thereby further increasing the fracture count. Lastly, the use of high-performance rock bolts, cable-bolt reinforcements, and W-shaped steel bands is expected to ensure the stability of rocks surrounding sandstone-roofed roadways subject to water-pressure disturbances.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jihuan Han ◽  
Jiuqun Zou ◽  
Weihao Yang ◽  
Chenchen Hu

With the increase in shaft depth, the problem of cracks and leakage in single-layer concrete lining in porous water-rich stable rock strata has become increasingly clear, in which case the mechanism of fracturing in shaft lining remains unclear. Considering that the increase in pore water pressure can cause rock mass expansion, this paper presents the concept of hydraulic expansion coefficient. First, a cubic model containing spherical pores is established for studying hydraulic expansion, and the ANSYS numerical simulation, a finite element numerical method, was used for calculating the volume change of the model under the pore water pressure. By means of the multivariate nonlinear regression method, the regression equation of the hydraulic expansion coefficient is obtained. Second, based on the hydraulic expansion effect on the rock mass, an interaction model of pore water pressure–porous rock–shaft lining is established and further solved. Consequently, the mechanism of fracturing in shaft lining caused by high-pressure pore water is revealed. The results show that the hydraulic expansion effect on the surrounding rock increases with its porosity and decreases with its elastic modulus and Poisson’s ratio; the surrounding rock expansion caused by the change in pore water pressure can result in the outer edge of the lining peeling off from the surrounding rock and tensile fracturing at the inner edge. Therefore, the results have a considerable guiding significance for designing shaft lining through porous water-rich rock strata.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Hongwen Jing ◽  
Wenxin Zhu

Water inrush caused by the wetting-drying cycle is a difficult problem in tunnel excavation. To investigate the effect of the wetting-drying cycle on the stability of the tunnel surrounding rock, physical experiments and numerical simulations regarding the process of tunnel excavation with different wetting-drying cycle numbers were performed in this study. The evolutions of stress, displacement, and pore water pressure were analyzed. With the increase in cycle number, the pore water pressure, vertical stress, and top-bottom approach of the tunnel surrounding rock increase gradually. And the increasing process could be divided into three stages: slightly increasing stage, slowly increasing stage, and sharply increasing stage, respectively. The failure process of the surrounding rock under the wetting-drying cycle gradually occurs from the roof to side wall, while the baseplate changes slightly. The simulation results showed that the maximum principal stress in the surrounding rock mass of the tunnel increases, while the minimum principal stress decreases. Furthermore, the displacement of the rock mass decreases gradually with the increasing distance from the tunnel surface. By comparing the simulation results with the experimental results, well consistency is shown. The results in this study can provide helpful references for the safe excavation and scientific design of a tunnel under the wetting-drying cycle.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Zhan-ping Song ◽  
Ten-tian Yang ◽  
An-nan Jiang

To study the tunnel stability at various static water pressures and determine the mechanical properties and deformation behavior of surrounding rock, a modified effective stress formula was introduced into a numerical integration algorithm of elastic-plastic constitutive equation, that is, closest point projection method (CPPM). Taking the effects of water pressure and seepage into account, a CPPM-based formula was derived and a CPPM algorithm based on Drucker-Prager yield criterion considering the effect of pore water pressure was provided. On this basis, a CPPM-based elastic-plastic numerical analysis program considering pore water pressure was developed, which can be applied in the engineering of tunnels and other underground structures. The algorithm can accurately take the effects of groundwater on stability of surrounding rock mass into account and it can show the more pronounced effect of pore water pressure on stress, deformation, and the plastic zone in a tunnel. The stability of water flooding in Fusong tunnel was systematically analyzed using the developed program. The analysis results showed that the existence of groundwater seepage under tunnel construction will give rise to stress redistribution in the surrounding rock mass. Pore water pressure has a significant effect on the surrounding rock mass.


2021 ◽  
Vol 7 (2) ◽  
pp. 131-145
Author(s):  
Gerald Guntur Pandapotan Siregar ◽  
Fajar aldoko Kurniawan

The embankment dam is the most widely built dam in the world, especially in Indonesia. However, embankment dams are also prone to collapse. Dam failures due to the piping process through the dam body account for 30.5% of the total dam collapses worldwide. Therefore, it is necessary to periodically monitor and evaluate the condition of pore water pressure and seepage in a dam which is usually carried out using installed instrumentation. Very little has been done on instrumentation interpretation of earthfill dams in Indonesia, which is a very worrying condition. It is possible that old or even new dams have shown behavior that leads to a decrease in safety. This condition can be monitored by instrumentation in the dam if interpreted properly. Kedung Ombo Dam as an old embankment dam but has a fairly complete instrumentation can be evaluated for safety related to pore water pressure and phreatic line (seepage line). Pore water pressure evaluation is carried out by collecting piezometer readings and reservoir water level fluctuations over a period of several years. The results of the research on the interpretation of piezometer readings indicate that the overall safety of the Kedung Ombo dam is still good in terms of pore water pressure conditions. However, there are some anomalous conditions that should be investigated further


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yingchao Wang ◽  
Yang Liu ◽  
Yongliang Li ◽  
Wen Jiang ◽  
Yueming Wang

The influence of groundwater on tunnel engineering is very complicated. Due to the complexity of water flow water pressure transfer and uncertain defects in the stratum, all of which are key factors with regard to the design of tunnel engineering. Therefore, the variation of surrounding rock during excavation and the deformation and failure of soft surrounding rock under different seepage paths of underground water after excavation systematically. Experimental results showed that the stress change of surrounding rock caused by tunnel excavation can be divided into 3 stages: stress redistribution, stress adjustment, and stress rebalancing. In the process of water pressure loading, water flow rate is closely related to the experimental phenomenon. The between stable loading water pressure pore water pressure of the tunnel surrounding rock and the distance from the measuring point to the edge of the tunnel obey the exponential function of the decreasing growth gradient. With the increase of loading pressure, the pore water pressure and stress at the top of the tunnel increase, and the coupling of stress field and seepage field on both sides of surrounding rock more and more intense. The failure process of the tunnel can be divided into 6 stages according to the damage degree. The final failure pattern of the surrounding rock of the tunnel is mainly determined by the disturbed area of excavation. The arched failure area and the collapse-through failure area are composed of three regions. The surrounding rock is characterized by a dynamic pressure arch in the process of seepage failure, but it is more prone to collapse failure at low water pressure. The results of this study are the progressive failure mechanism of tunnel under different groundwater seepage paths and would be of great significance to the prevention of long-range disasters.


2012 ◽  
Vol 157-158 ◽  
pp. 865-869
Author(s):  
Ji Ming Zhu ◽  
Wen Quan Zhang ◽  
Hai Ling Yu ◽  
Xiang Lan Liu

To estimate the effect of deep large section Shaft Face Grouting for water block, the mathematical model is obtained according to the seepage theory. The numerical model for calculation is established by the program ABAQUS. The laws of change of pore water pressure, the effect area of dewatering, the velocity of seepage, water inflow of shaft working face before and after grouting is obtained by numerical simulation. It is shown that the grouting can effectively plug water channel of cracked surrounding rock, and prevent the pore water pressure lowering range to be larger. The working face seepage flow velocity was significantly reduced. The water inflow is decreased significantly. The safety of the shaft construction and the stability structure of shaft lining and upper strata are ensured by grouting. The numbers of grout stop and grouting construction can be largely reduced. The economic benefit is obvious. The scientific reference is provided for deep large section Shaft Face Grouting for water block.


Author(s):  
Adib Lathiful Huda ◽  
Sri Prabandiyani Retno Wardani ◽  
Suharyanto Suharyanto

Salah satu penyebab kegagalan struktur bendungan adalah terjadinya rembesan yang dipicu oleh tingginya tekanan air pori yang terjadi pada tubuh bendungan. Pada Bendungan Panohan, kebocoran rembesan terjadi hingga memotong lereng hilir bendungan yang dapat mengganggu stabilitas tubuh bendungan. Tujuan dari penelitian ini adalah untuk mengevaluasi tekanan air pori dan rembesan di tubuh Bendungan Panohan menggunakan metode analisis instrumentasi piezometer dan v-notch yang kemudian dibandingkan dengan analisis metode elemen hingga (finite element method / FEM) menggunakan program perangkat lunak SEEP/W. Metode FEM menggunakan parameter desain material selama tahap perencanaan bendungan. Kedua analisis dilakukan pada section C - C Bendungan Panohan menggunakan beberapa variasi ketinggian muka air waduk. Hasil perbandingan menunjukkan bahwa nilai tekanan air pori dan rembesan pada metode FEM lebih besar dari hasil analisis dengan metode pembacaan instrumentasi pada kondisi muka air minimal dan normal. Kondisi sebaliknya terjadi pada kondisi ketinggian air banjir, yaitu nilai tekanan air pori dan rembesan dari pembacaan instrumentasi lebih besar dari hasil analisis metode FEM. Seiring dengan naiknya ketinggian muka air waduk, terjadi kenaikan nilai tekanan air pori dan rembesan dari kedua hasil analisis. Kondisi rembesan yang terjadi pada  Bendungan Panohan saat ini tidak aman pada kondisi muka air banjir, karena memiliki nilai debit rembesan 0,38 ltr/det melebihi dari yang disyaratkan yaitu sebesar 0,35 ltr/det.Kata kunci : bendungan panohan; tekanan air pori; rembesan; FEM ABSTRACTOne of the causes of the failure of a dam structure is the occurrence of seepage triggered by high pore water pressure that occurs in the body of the dam. In the Panohan Dam, seepage occurs on the downstream slope of the dam which can disturb the stability of the dam body. The purpose of this research is to evaluate the pore water pressure and seepage in the Panohan Dam body using the piezometer and v-notch instrumentation reading method which is then compared with the finite element (FEM) method using SEEP/W software program. FEM method uses material parameters during the dam planning stage. Both analyses were carried out on the C – C section of the Panohan Dam using several variations of reservoir water level. The comparison results show that pore water pressure in the FEM method is greater than the pore water pressure value based on the piezometer method at the minimum and normal water level conditions. The opposite condition occurs in maximum water level conditions. The seepage value of the v-notch reading is greater than the seepage value from the FEM method. Seepage that occurs in the Panohan Dam is currently unsafe under the maximal water level conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Tongqiang Xiong ◽  
Jianlin Li ◽  
Lehua Wang ◽  
Huafeng Deng ◽  
Xiaoliang Xu

Extreme ice-snow melting in winter affects the infiltration process of snow water on the slope surface significantly and plays an important role in the deformation stability of landslide. Variation in pore water pressure is regarded as an essential factor of landslide instability induced by snow water. In order to figure out the internal relationship between the infiltration process of snow water and the failure mode of deformation and instability of the accumulation landslide, the response law and deformation and failure mode of pore water pressure and soil pressure of landslide accumulation under different ice-snow melting conditions are deeply studied based on the indoor large-scale landslide model test. We have studied the physical model test under the combined action of reservoir water and ice-snow melting. It reveals the seepage erosion deformation and failure mechanism. It undoubtedly provides references of great importance for the geological hazard governance of bank slope in the Three Gorges Reservoir Area.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jiangwei Liu ◽  
Changyou Liu ◽  
Qiangling Yao

Artificially fracturing coal-rock mass serves to form break lines therein, which is related to the distribution of cracked boreholes. For this reason, we use physical experiments and numerical simulations to study the crack initiation and propagation characteristics of dense linear multihole drilling of fractured coal-rock mass. The results indicate that only in the area between the first and last boreholes can hydraulic fracturing be controlled by dense linear multihole expansion along the direction of the borehole line; in addition, no directional fracturing occurs outside the drilling section. Upon increasing parameters such as the included angle θ between the drilling arrangement line and the maximum principal stress σ1 direction, the drilling spacing D, the difference Δσ in principal stress, etc., the effect of directional fracture is gradually weakened, and the hydraulic fractures reveal three typical cracking modes: cracking along the borehole line, bidirectional cracking (along the borehole line and perpendicular to the minimum principal stress σ3), and cracking perpendicular to σ3. Five propagation modes also appear in sequence: propagating along borehole line, step-like propagation, S-shaped propagation, bidirectional propagation (along the borehole line and perpendicular to σ3), and propagation perpendicular to σ3. Based on these results, we report the typical characteristics of three-dimensional crack propagation and discuss the influence of the gradient of pore water pressure. The results show clearly that crack initiation and propagation are affected by both the geostress field and the pore water pressure. The pore water pressure will exhibit a circular-local contact-to-integral process during crack initiation and expansion. When multiple cracks approach, the superposition of pore water pressure at the tip of the two cracks increases the damage to the coal rock, which causes crack reorientation and intersection.


2011 ◽  
Vol 204-210 ◽  
pp. 341-345 ◽  
Author(s):  
An Nan Jiang ◽  
Zhan Ping Song ◽  
Jun Xiang Wang

Aiming at the characters of high ground stress and high pore water stress, which resulting in water invasion risk in excavation of subsea rock, FLAC is adopted to simulate the strain localization phenomena of surrounding rock with different pore water pressure and confining pressure. In calculation, the strain soft constitutive relation and “first loading then unloading” pattern are used. Simulation result states that, the bigger the confining pressure is the more destruct the surrounding rock is, and the water invasion risk is more serious. In high confining pressure condition, shortly after excavation, the destroy zone is thin ring, subsequently, the arc shoulder and arc bottom occurs shallow hole, the destroy zone increasing, which presents zonal disintegration. Pore pressure has obvious influence at plastic strain of rock, the high pore water pressure results in surrounding rock destroy zone enlarging, which changing the seepage field of rock, and probably lead to seepage instability.


Sign in / Sign up

Export Citation Format

Share Document