scholarly journals Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Emmanuel E. Okoro ◽  
Rachael Josephs ◽  
Samuel E. Sanni ◽  
Yuven Nchila

The adoption of nanodoped membranes in the areas of gas stream separation, water, and wastewater treatments due to the physical and operational advantages of such membranes has significantly increased. The literature has shown that the surface structure and physicochemical properties of nanodoped membranes contribute significantly to the interaction and rejection characteristics when compared to bare membranes. This study reviews the recent developments on nanodoped membranes, and their hybrids for carbon capture and gas separation operations. Features such as the nanoparticles/materials and hybrids used for membrane doping and the effect of physicochemical properties and water vapour in nanodoped membrane performance for carbon capture are discussed. The highlights of this review show that nanodoped membrane is a facile modification technique which improves the membrane performance in most cases and holds a great potential for carbon capture. Membrane module design and material, thickness, structure, and configuration were identified as key factors that contribute directly, to nanodoped membrane performance. This study also affirms that the three core parameters satisfied before turning a microporous material into a membrane are as follows: high permeability and selectivity, ease of fabrication, and robust structure. From the findings, it is also observed that the application of smart models and knowledge-based systems have not been extensively studied in nanoparticle-/material-doped membranes. More studies are encouraged because technical improvements are needed in order to achieve high performance of carbon capture using nanodoped membranes, as well as improving their durability, permeability, and selectivity of the membrane.

Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3315
Author(s):  
Aida-Ștefania Manole ◽  
Radu-Ioan Ciobanu ◽  
Ciprian Dobre ◽  
Raluca Purnichescu-Purtan

Constant Internet connectivity has become a necessity in our lives. Hence, music festival organizers allocate part of their budget for temporary Wi-Fi equipment in order to sustain the high network traffic generated in such a small geographical area, but this naturally leads to high costs that need to be decreased. Thus, in this paper, we propose a solution that can help offload some of that traffic to an opportunistic network created with the attendees’ smartphones, therefore minimizing the costs of the temporary network infrastructure. Using a music festival-based mobility model that we propose and analyze, we introduce two routing algorithms which can enable end-to-end message delivery between participants. The key factors for high performance are social metrics and limiting the number of message copies at any given time. We show that the proposed solutions are able to offer high delivery rates and low delivery delays for various scenarios at a music festival.


2000 ◽  
Vol 78 (3) ◽  
pp. 231-241 ◽  
Author(s):  
M D'Iorio

Molecular organic materials have had an illustrious past but the ability to deposit these as homogeneous thin films has rejuvenated the field and led to organic light-emitting diodes (OLEDs) and the development of an increasing number of high-performance polymers for nonlinear and electronic applications. Whereas the use of organic materials in micro-electronics was restricted to photoresists for patterning purposes, polymeric materials are coming of age as metallic interconnects, flexible substrates, insulators, and semiconductors in all-plastic electronics. The focus of this topical review will be on organic light-emitting devices with a discussion of the most recent developments in electronic devices.PACS Nos.: 85.60Jb, 78.60Fi, 78.55Kz, 78.66Qn, 73.61Ph, 72.80Le


Author(s):  
Daniel Bowie ◽  
Cynthia A. Cruickshank

Energy use for space cooling has increased by 156% from 1990 to 2010 in the Canadian residential sector. In many parts of the country, the increasing use of electrically driven air-conditioners has begun to shift the peak load on the electricity grid from the coldest days of winter to the hottest days of summer. Many of Canada’s major electric utilities providers rely on fossil fuels to generate the additional capacity needed to meet the peak demand, resulting in significant greenhouse gas emissions. Solar-driven sorption chillers remain one of the possible solutions for shaving the peak loads experienced by the electricity grid. This paper presents a review of the recent developments in the research of adsorption and absorption chillers, as well as a comparison of the two technologies based on the latest published experimental results found in the literature. Adsorption chillers continue to evolve in their design, including the use of new consolidated and composite adsorbents, the integration of coated adsorbers into internal heat exchangers, and newly developed advanced cycles for heat and mass recovery. While the physical design of adsorption chillers continues to be advanced, the development of absorption chillers for solar cooling applications has largely been focused on optimizing the system as a whole through improved control strategies and the implementation of newly developed high performance solar collectors. Finally, the paper aims to assess the current state of development of solar-driven sorption chillers to provide insight into their applicability in the Canadian residential sector, as well as the remaining challenges facing this technology.


Sign in / Sign up

Export Citation Format

Share Document