scholarly journals A Robust Estimate Method for Damage Detection of Concrete Structures Using Contaminated Data

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
X. Peng ◽  
F. J. Qin ◽  
Q. W. Yang ◽  
H. Chen

Damage detection of concrete structures based on finite element model and measured response parameters has been an important research topic in recent years. It is well known that test data of mechanical behavior of concrete show great scatterness. As a result, the measured response parameters of concrete structures sometimes have gross errors. The gross error is a physical quantity that is much larger than data noise, which may lead to serious distortion of calculation results. To this end, a new robust estimate method termed as the augmented inverse estimate is proposed in this work for damage detection of concrete structures to resist gross errors in data. It has the advantages of very simple programming, convenient utilization, high computational accuracy, and broad prospect of application. Central to the augmented inverse estimate are the augmentation of coefficient matrix and the multiple computations based on feedback evaluation. A reinforced concrete beam structure is used as an example to verify the proposed method. It was found that the proposed method can successfully identify the location and extent of structural damage even if the used data have gross errors.

Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2019 ◽  
Vol 19 (1) ◽  
pp. 322-336 ◽  
Author(s):  
Yongfeng Xu

Research works on photogrammetry have received tremendous attention in the past few decades. One advantage of photogrammetry is that it can measure displacement and deformation of a structure in a fully non-contact, full-field manner. As a non-destructive evaluation method, photogrammetry can be used to detect structural damage by identifying local anomalies in measured deformation of a structure. Numerous methods have been proposed to measure deformations by tracking exterior features of structures, assuming that the features can be consistently identified and tracked on sequences of digital images captured by cameras. Such feature-tracking methods can fail if the features do not exist on captured images. One feasible solution to the potential failure is to artificially add exterior features to structures. However, painting and mounting such features can introduce unwanted permanent surficial modifications, mass loads, and stiffness changes to structures. In this article, a photogrammetry-based structural damage detection method is developed, where a visible laser line is projected to a surface of a structure, serving as an exterior feature to be tracked; the projected laser line is massless and its existence is temporary. A laser-line-tracking technique is proposed to track the projected laser line on captured digital images. Modal parameters of a target line corresponding to the projected laser line can be estimated by conducting experimental modal analysis. By identifying anomalies in curvature mode shapes of the target line and mapping the anomalies to the projected laser line, structural damage can be detected with identified positions and sizes. An experimental investigation of the damage detection method was conducted on a damaged beam. Modal parameters of a target line corresponding to a projected laser line were estimated, which compared well with those from a finite element model of the damaged beam. Experimental damage detection results were validated by numerical ones from the finite element model.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


2018 ◽  
Vol 8 (2) ◽  
pp. 7-16 ◽  
Author(s):  
Sajad Esmaielzadeh ◽  
Hassan Ahmadi ◽  
Seyed Abbas Hosseini

Abstract Damage detection in concrete gravity dams using Hilbert-Huang Method, as one of the most common signal processing techniques, is studied in this research. After considering a typical geometry for dams, damage is modelled by a reduction in the modulus of elasticity in the dam’s body (in three levels of damage) and in different areas of the structure. The dam is excited by a horizontal earthquake and the primary natural frequencies of the dam are calculated by applying Hilbert-Huang Method to the measured response, which is the acceleration of five points in the system. Based on the changes in the frequencies of the damaged and undamaged structure, a parameter, called relative frequency error, has been introduced. The results show that the proposed criterion used in this study can not only properly identify the location of damage but also predict the severity of the structural damage in concrete gravity dams accurately.


2007 ◽  
Vol 348-349 ◽  
pp. 389-392
Author(s):  
Young Sang Cho ◽  
Seong Uk Hong

The impact echo method has been widely used to evaluate the integrity of concrete structures. This paper is to study damage detection technique of concrete members using impact echo method, one of the nondestructive tests based on stress waves. Stress wave propagation behavior is to be studied based on wave mechanics in concrete media. Based on the theoretical study, nondestructive tests using stress waves will be conducted to observe the wave behavior on structural damages. For the damage detection of concrete structures, a mock-up specimen was prepared, and various tests were conducted for the study of the behavior of stress waves. The concrete slab of the flaw detection consist of 5 types; the first group for the thickness presumption, the second group for the position of the voids, the third group for the position of the re-bars, the fourth group for the position conduit, and the fifth group for the position of the crack. Test results are evaluated and summarized to verify if the nondestructive tests can survey damages in the concrete structures in this paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Zahra Tabrizian ◽  
Gholamreza Ghodrati Amiri ◽  
Morteza Hossein Ali Beigy

This paper presents damage detection and assessment methodology based on the changes in dynamic parameters of a structural system. The method is applied at an element level using a finite element model. According to continuum damage mechanics, damage is represented by a reduction factor of the element stiffness. A recently developed metaheuristic optimization algorithm known as the charged system search (CSS) is utilized for locating and quantifying the damaged areas of the structure. In order to demonstrate the abilities of this method, three examples are included comprising of a 10-elements cantilever beam, a Bowstring plane truss, and a 39-element three-story three-bay plane frame. The possible damage types in structures by considering several damage scenarios and using incomplete modal data are modeled. Finally, results are obtained from the CSS algorithm by detecting damage in these structures and compared to the results of the PSOPC algorithm. In addition, the effect of noise is shown in the results of the CSS algorithm by suitable diagrams. As is illustrated, this method has acceptable results in the structural detection damage with low computational time.


2013 ◽  
Vol 20 (4) ◽  
pp. 633-648 ◽  
Author(s):  
Zahra Tabrizian ◽  
Ehsan Afshari ◽  
Gholamreza Ghodrati Amiri ◽  
Morteza Hossein Ali Beigy ◽  
Seyed Mohammad Pourhoseini Nejad

The present paper aims to explore damage assessment methodology based on the changes in dynamic parameters properties of vibration of a structural system. The finite-element model is used to apply at an element level. Reduction of the element stiffness is considered for structural damage. A procedure for locating and quantifying damaged areas of the structure based on the innovative Big Bang-Big Crunch (BB-BC) optimization method is developed for continuous variable optimization. For verifying the method a number of damage scenarios for simulated structures have been considered. For the purpose of damage location and severity assessment the approach is applied in three examples by using complete and incomplete modal data. The effect of noise on the accuracy of the results is investigated in some cases. A great unbraced frame with a lot of damaged element is considered to prove the ability of proposed method. More over BB-BC optimization method in damage detection is compared with particle swarm optimizer with passive congregation (PSOPC) algorithm. This work shows that BB-BC optimization method is a feasible methodology to detect damage location and severity while introducing numerous advantages compared to referred method.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2521 ◽  
Author(s):  
Ge Zhang ◽  
Liqun Tang ◽  
Licheng Zhou ◽  
Zejia Liu ◽  
Yiping Liu ◽  
...  

Long-term structural health monitoring (SHM) has become an important tool to ensure the safety of infrastructures. However, determining methods to extract valuable information from large amounts of data from SHM systems for effective identification of damage still remains a major challenge. This paper provides a novel effective method for structural damage detection by introduction of space and time windows in the traditional principal component analysis (PCA) technique. Numerical results with a planar beam model demonstrate that, due to the presence of space and time windows, the proposed double-window PCA method (DWPCA) has a higher sensitivity for damage identification than the previous method moving PCA (MPCA), which combines only time windows with PCA. Further studies indicate that the developed approach, as compared to the MPCA method, has a higher resolution in localizing damage by space windows and also in quantitative evaluation of damage severity. Finally, a finite-element model of a practical bridge is used to prove that the proposed DWPCA method has greater sensitivity for damage detection than traditional methods and potential for applications in practical engineering.


Sign in / Sign up

Export Citation Format

Share Document