scholarly journals Tissue Engineering Scaffold Materials to Repair Sports Cartilage Injury

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mo Xing

With the continued development of sports in China, sports sometimes cause cartilage damage. The purpose of this research is to study the tissue engineering scaffold material for sports cartilage damage repair. In this study, mesenchymal rat bone marrow stem cells (to put it simply, stem cells are a type of cell with unlimited or immortal self-renewal capacity, capable of producing at least one type of highly differentiated progeny cells) were obtained by the total bone wash method. The cells were inoculated into the cell culture bottle. When the primary cultured cells proliferated to about 80% of the culture bottle area, the cells were digested with trypsin to open the cell link, then the medium containing 10% serum was added to terminate the cell digestion, and then the passage expansion was carried out according to the cell density. PLGA/NHA and PLGA were heated to 65°C under ultrasonic vibration until uniform PLGA/NHA and PLGA solutions were obtained. Then, the samples were added to the tube mold and then heated and cooled to obtain the composite porous scaffold of mesenchymal stem cells. 10 μl MSCs cell suspension was extracted with a microinjector, and the needle was injected from the inside of the scaffold, and the cell suspension was added outside the scaffold to ensure that there were composite cells inside and outside the scaffold. The subcutaneous tissue of the skin was cut along the medial side of the knee joint and the capsule of the switch segment was cut. The scaffold materials were filled into the osteochondral defect to observe the cartilage healing. The mechanical strength of 0.5% PLGA-MSCs composite porous scaffold was increased to 1.1 MPa, and the cell density was high. The repair of cartilage in rats was the best. The results showed that the porous scaffolds designed in this study have good compatibility and are beneficial to repair sports cartilage injury.

2008 ◽  
Vol 57 (11) ◽  
pp. 1026-1035 ◽  
Author(s):  
Zhihua Zhou ◽  
Xiaoping Liu ◽  
Lihua Liu ◽  
Qingquan Liu ◽  
Qingfeng Yi

2013 ◽  
Vol 655-657 ◽  
pp. 1939-1944 ◽  
Author(s):  
Wen Xiang Zheng ◽  
Ting Chun Shi ◽  
Xiu Yan Yue ◽  
Xiao An

It brings the pain to the patients whether in spirit or on physiology when laryngeal cartilage is injured. The paper reviewed the previous methods of improving the pronunciation for laryngeal cartilage injury and patients whose larynxes have been cut off, and compared the advantages and disadvantages of various methods. On the basis of the studies on the artificial auricle scaffold, artificial spinal cord scaffold in our center, this paper puts forward a larynx injury repair methods with a personalized tissue engineering artificial larynx, namely taking the advantages of biological manufacturing and tissue engineering related technology to prepare laryngeal cartilage scaffolds, and then the stem cells could be cultured into the scaffold in vitro. After more study and test, this bio-manufactured larynx scaffold could be expected as one of the ideal repair methods for the larynx injury.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ting Gong ◽  
Boon Chin Heng ◽  
Edward Chin Man Lo ◽  
Chengfei Zhang

Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.


2017 ◽  
Vol 29 (1) ◽  
pp. 205 ◽  
Author(s):  
S. A. Womack ◽  
D. J. Milner ◽  
D. W. Weisgerber ◽  
B. A. C. Harley ◽  
M. B. Wheeler

The pig is an ideal species for use in tissue engineering studies of bone and cartilage defect repair. Novel collagen-glycosaminoglycan hydrogel (CG) scaffolds have shown promise for supporting bone and cartilage growth from mesenchymal stem cells. In order to determine the suitability of these scaffolds for use in porcine models for bone and cartilage tissue engineering, we have begun to investigate the behaviour of porcine mesenchymal stem cells on this material. The purpose of this study was to determine if mesenchymal stem cells from fat (ASC) or bone marrow (BMSC) displayed better adherence and penetration into the CG scaffold material. The BMSC and ASC isolated from young adult Yorkshire pigs were cultured in DMEM with 10% fetal bovine serum. The ASC and BMSC were then trypsinized and used to seed ~3 mm diameter CG scaffolds with 140,000 cells/scaffold. Scaffolds were then cultured for 10 days by 3 different methods: roller culture, free-floating non-adherent dishes (floating), or attached to tissue culture-treated dishes (static). At the conclusion of the incubation period, the scaffold pieces were then fixed with 4% paraformaldehyde, embedded for cryosectioning, and sliced into 10 µm cryosections. Sections were stained for vimentin and 4’,6-diamidino-2-phenylindole (DAPI) to label cells. Stained sections were observed on a Leica DMB4200 microscope (Leica Microsystems, Wetzlar, Germany) and images acquired using ImagePro Plus software (Media Cybernetics Inc., Rockville, MD, USA). The DAPI-stained cells were counted to determine cell density and expressed as average number of nuclei per millimeter squared for each cell and culture type. Data were analysed by ANOVA utilising a post hoc Holm multiple comparison analysis. Samples from roller cultures did not display adhered cells for either BMSC or ASC. In contrast, floating and static culture allowed both ASC and BMSC to adhere to the scaffold and migrate to the centre of the scaffold equally well. However, significant differences in cell densities were noted between ASC and BMSC on CG scaffolds, with BMSC growing to higher densities than ASC in both floating and static culture. For floating cultures, BMSC-loaded scaffolds exhibited a cell density of 105.7 compared with 53.3 cells/mm2 for ASC (n = 4; P < 0.05). For static cultures, BMSC-loaded scaffolds exhibited a cell density of 128.3 compared with 36.8 cells/mm2 for ASC-loaded samples (n = 3; P < 0.01). Thus, BMSC grow to greater densities more rapidly than ASC and may be more efficient for use in forming bone and cartilage on these scaffolds. Current experiments underway will compare osteogenic and chondrogenic differentiation potential of ASC and BMSC on CG scaffolds, and will attempt to engineer osteochondral interface tissue on CG scaffolds from co-cultures of chondrocytes and stem cells.


2006 ◽  
Vol 102 (4) ◽  
pp. 3095-3101 ◽  
Author(s):  
Jin-Jun Qiu ◽  
Cheng-Mei Liu ◽  
Fen Hu ◽  
Xiao-Dong Guo ◽  
Qi-Xing Zheng

2020 ◽  
Vol 3 (10) ◽  
pp. 7193-7201
Author(s):  
Chih-Yu Wu ◽  
Chin-Lin Guo ◽  
Yen-Ching Yang ◽  
Chao-Wei Huang ◽  
Jun-Yu Zeng ◽  
...  

2020 ◽  
Vol 15 (5) ◽  
pp. 441-448 ◽  
Author(s):  
Wang Heng ◽  
Mit Bhavsar ◽  
Zhihua Han ◽  
John H. Barker

Recent interest in developing new regenerative medicine- and tissue engineering-based treatments has motivated researchers to develop strategies for manipulating stem cells to optimize outcomes in these potentially, game-changing treatments. Cells communicate with each other, and with their surrounding tissues and organs via electrochemical signals. These signals originate from ions passing back and forth through cell membranes and play a key role in regulating cell function during embryonic development, healing, and regeneration. To study the effects of electrical signals on cell function, investigators have exposed cells to exogenous electrical stimulation and have been able to increase, decrease and entirely block cell proliferation, differentiation, migration, alignment, and adherence to scaffold materials. In this review, we discuss research focused on the use of electrical stimulation to manipulate stem cell function with a focus on its incorporation in tissue engineering-based treatments.


Sign in / Sign up

Export Citation Format

Share Document