scholarly journals A Novel Supplement Attenuates Oxidative Stress-Induced TDP-43-Related Pathogenesis in TDP-43-Expressed Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Eun Jin Yang

Amyotrophic lateral sclerosis (ALS) is caused by selective the loss of spinal motor neurons by multifactorial pathological mechanisms and results in muscle atrophy. Incidence rates of ALS are increasing over time, but there are no effective treatments at present due to limitations on approved therapies (riluzole and edaravone). Therefore, this study investigated whether combined treatment with Bojungikgi-tang and riluzole could act synergistically in transactive response DNA-binding protein 43 (TDP-43) stress granule cells. To examine the effect of combined treatment on oxidative stress-induced cell death, the CCK8 assay was performed for the detection of cell viability. The expression of oxidative stress-induced proteins was determined by Western blot. Quantification of sodium arsenite-induced reactive oxygen species (ROS) was measured in TDP-43 stress granular cells using 2,7-diacetyl dichlorofluorescein diacetate. To investigate the effect of combined treatment on TDP-43 aggregation, immunofluorescence and immunoblotting were performed in TDP-43 stress granular cells. This combined treatment alleviated oxidative stress-induced cell death by increasing the expression levels of antioxidation proteins, such as heme oxygenase-1 and B cell lymphoma-2-associated X protein. Furthermore, it reduced oxidative stress-induced TDP-43 aggregates and lowered the levels of autophagy-related proteins, including p62, light chain 3b, and ATG8, in TDP-43-expressing cells. Our results suggest that this combined treatment could be helpful for autophagy regulation in other neurodegenerative diseases.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 328
Author(s):  
Tuy An Trinh ◽  
Young Hye Seo ◽  
Sungyoul Choi ◽  
Jun Lee ◽  
Ki Sung Kang

Oxidative stress is one of the main causes of brain cell death in neurological disorders. The use of natural antioxidants to maintain redox homeostasis contributes to alleviating neurodegeneration. Glutamate is an excitatory neurotransmitter that plays a critical role in many brain functions. However, excessive glutamate release induces excitotoxicity and oxidative stress, leading to programmed cell death. Our study aimed to evaluate the effect of osmundacetone (OAC), isolated from Elsholtzia ciliata (Thunb.) Hylander, against glutamate-induced oxidative toxicity in HT22 hippocampal cells. The effect of OAC treatment on excess reactive oxygen species (ROS), intracellular calcium levels, chromatin condensation, apoptosis, and the expression level of oxidative stress-related proteins was evaluated. OAC showed a neuroprotective effect against glutamate toxicity at a concentration of 2 μM. By diminishing the accumulation of ROS, as well as stimulating the expression of heat shock protein 70 (HSP70) and heme oxygenase-1 (HO-1), OAC triggered the self-defense mechanism in neuronal cells. The anti-apoptotic effect of OAC was demonstrated through its inhibition of chromatin condensation, calcium accumulation, and reduction of apoptotic cells. OAC significantly suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 kinases. Thus, OAC could be a potential agent for supportive treatment of neurodegenerative diseases.



Blood ◽  
2012 ◽  
Vol 119 (10) ◽  
pp. 2368-2375 ◽  
Author(s):  
Guilherme B. Fortes ◽  
Leticia S. Alves ◽  
Rosane de Oliveira ◽  
Fabianno F. Dutra ◽  
Danielle Rodrigues ◽  
...  

Abstract Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.





2013 ◽  
Vol 305 (3) ◽  
pp. F255-F264 ◽  
Author(s):  
Subhashini Bolisetty ◽  
Amie Traylor ◽  
Abolfazl Zarjou ◽  
Michelle S. Johnson ◽  
Gloria A. Benavides ◽  
...  

Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.



Molecules ◽  
2015 ◽  
Vol 20 (7) ◽  
pp. 12545-12557 ◽  
Author(s):  
Dong-Sung Lee ◽  
Byung-Yoon Cha ◽  
Je-Tae Woo ◽  
Youn-Chul Kim ◽  
Jun-Hyeog Jang


Nature ◽  
1992 ◽  
Vol 360 (6406) ◽  
pp. 753-755 ◽  
Author(s):  
Qiao Yan ◽  
Jeffrey Elliott ◽  
William D. Snider


2015 ◽  
Vol 16 (12) ◽  
pp. 14526-14539 ◽  
Author(s):  
Seung Lee ◽  
Hana Yang ◽  
Gun Son ◽  
Hye Park ◽  
Cheung-Seog Park ◽  
...  


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3996-3996
Author(s):  
Xiaolei Wei ◽  
Yun Mai ◽  
Ru Feng ◽  
B. Hilda Ye

Abstract Diffuse large B cell lymphoma (DLBCL) is the most common lymphoid malignancy in the adult population and can be subdivided into two main subtypes, i.e. GCB-DLBCL and ABC-DLBCL. While both subtypes are derived from normal germinal center (GC) B cells, they differ in B cell maturation stage, transformation pathway, and clinical behavior. When treated with either the combination chemotherapy CHOP or the immuno-chemotherapy R-CHOP, the survival outcome of ABC-DLBCL patients is typically much worse than that of GCB-DLBCL patients. Although the molecular mechanisms underlying this survival disparity remain poorly understood, an attractive hypothesis is that there exist subtype-specific resistance mechanisms directed against the chemo-therapy drugs in the original CHOP formulation. In support of this notion, our previous study has revealed that Doxorubicin (Dox), the main cytotoxic ingredient in CHOP, has subtype-specific mechanisms of cytotoxicity in DLBCLs due to differences in its subcellular distribution pattern. In particular, Dox-induced cytotoxicity in ABC-DLBCLs is largely dependent on oxidative stress rather than DNA damage response. Based on these findings, we hypothesize that agents capable of disturbing the redox balance in ABC-DLBCL cells could potentiate the therapeutic activity of first line lymphoma therapy. As the major route of cystine uptake from extracellular space, the xCT cystine/glutamate antiporter controls the rate-limiting step for glutathione (GSH) synthesis in several types of cancer cells, including CLL. We focused the current study on xCT because its protein stability is known to be positively regulated by a splicing variant of CD44 and we have recently published that expression of CD44 and CD44V6 are poor prognosticators for DLBCL. Indeed, we found that surface CD44 is exclusively expressed in ABC-DLBCL (6/6) but not GCB-DLBCL (0/5) cell lines. In addition, the xCT proteins in two ABC-DLBCL cell lines, Riva and SuDHL2, are extraordinarily stable, with half-lives exceeding 24 hours. As such, transient transfection using siRNA oligos was ineffective in reducing the endogenous xCT protein in ABC-DLBCL cell lines. To circumvent this issue, we turned to a clinically approved anti-inflammatory drug, sulfasalazine (SASP), which is a validated xCT inhibitor in its intact form. When Riva and SuDHL2 cells were treated overnight with the IC50 dose of SASP, the endogenous GSH pool was drastically reduced, leading to significant increase in intracellular ROS, p38 and JNK activation, and progressive apoptosis. Unexpectedly, we found that Dox-treated cells had significantly elevated GSH levels, possibly the result of an antioxidant response to Dox-triggered ROS accumulation. This increase in GSH was completely suppressed when the IC25 dosage of SASP was included in the Dox treatment. As expected, SASP/Dox combination significantly enhanced Dox-triggered ROS accumulation and synergistically promoted cell death in Riva and SuDHL2 cells. Mechanistically, p38 activation and cell death induced by SASP/Dox combination could be markedly attenuated by pretreatment with glutathione monoethyl ester, demonstrating the critical role of oxidative stress. Furthermore, cytotoxicity triggered by SASP/Dox could also be suppressed by the p38 inhibitor, SB203580. We have developed stable cell lines expressing xCT shRNA to confirm the results obtained with SASP. In vivo interactions between SASP and Dox are also being evaluated in xenograft-based ABC-DLBCL models. In summary, we report here for the first time a critical role of xCT in sustaining in vivo GSH production in ABC-DLBCL cells. More importantly, pharmacologic inhibition of xCT function in ABC-DLBCL cells not only prevented Dox-induced endogenous GSH increase, but also potentiated Dox-induced ROS accumulation and cytotoxicity in a p38-dependent manner. With additional evidence from ongoing experiments, our study aims to provide a mechanistic basis for development of novel therapies that target either xCT or redox homeostasis to improve treatment outcomes for ABC-DLBCLs. Disclosures No relevant conflicts of interest to declare.





2001 ◽  
Vol 75 (1) ◽  
pp. 304-313 ◽  
Author(s):  
Kai Chen ◽  
Karlene Gunter ◽  
Mahin D. Maines


Sign in / Sign up

Export Citation Format

Share Document