scholarly journals Protective Effect of Osmundacetone against Neurological Cell Death Caused by Oxidative Glutamate Toxicity

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 328
Author(s):  
Tuy An Trinh ◽  
Young Hye Seo ◽  
Sungyoul Choi ◽  
Jun Lee ◽  
Ki Sung Kang

Oxidative stress is one of the main causes of brain cell death in neurological disorders. The use of natural antioxidants to maintain redox homeostasis contributes to alleviating neurodegeneration. Glutamate is an excitatory neurotransmitter that plays a critical role in many brain functions. However, excessive glutamate release induces excitotoxicity and oxidative stress, leading to programmed cell death. Our study aimed to evaluate the effect of osmundacetone (OAC), isolated from Elsholtzia ciliata (Thunb.) Hylander, against glutamate-induced oxidative toxicity in HT22 hippocampal cells. The effect of OAC treatment on excess reactive oxygen species (ROS), intracellular calcium levels, chromatin condensation, apoptosis, and the expression level of oxidative stress-related proteins was evaluated. OAC showed a neuroprotective effect against glutamate toxicity at a concentration of 2 μM. By diminishing the accumulation of ROS, as well as stimulating the expression of heat shock protein 70 (HSP70) and heme oxygenase-1 (HO-1), OAC triggered the self-defense mechanism in neuronal cells. The anti-apoptotic effect of OAC was demonstrated through its inhibition of chromatin condensation, calcium accumulation, and reduction of apoptotic cells. OAC significantly suppressed the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 kinases. Thus, OAC could be a potential agent for supportive treatment of neurodegenerative diseases.

Blood ◽  
2012 ◽  
Vol 119 (10) ◽  
pp. 2368-2375 ◽  
Author(s):  
Guilherme B. Fortes ◽  
Leticia S. Alves ◽  
Rosane de Oliveira ◽  
Fabianno F. Dutra ◽  
Danielle Rodrigues ◽  
...  

Abstract Diseases that cause hemolysis or myonecrosis lead to the leakage of large amounts of heme proteins. Free heme has proinflammatory and cytotoxic effects. Heme induces TLR4-dependent production of tumor necrosis factor (TNF), whereas heme cytotoxicity has been attributed to its ability to intercalate into cell membranes and cause oxidative stress. We show that heme caused early macrophage death characterized by the loss of plasma membrane integrity and morphologic features resembling necrosis. Heme-induced cell death required TNFR1 and TLR4/MyD88-dependent TNF production. Addition of TNF to Tlr4−/− or to Myd88−/− macrophages restored heme-induced cell death. The use of necrostatin-1, a selective inhibitor of receptor-interacting protein 1 (RIP1, also known as RIPK1), or cells deficient in Rip1 or Rip3 revealed a critical role for RIP proteins in heme-induced cell death. Serum, antioxidants, iron chelation, or inhibition of c-Jun N-terminal kinase (JNK) ameliorated heme-induced oxidative burst and blocked macrophage cell death. Macrophages from heme oxygenase-1 deficient mice (Hmox1−/−) had increased oxidative stress and were more sensitive to heme. Taken together, these results revealed that heme induces macrophage necrosis through 2 synergistic mechanisms: TLR4/Myd88-dependent expression of TNF and TLR4-independent generation of ROS.


2018 ◽  
Vol 20 (1) ◽  
pp. 39 ◽  
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
John M. Baust ◽  
Kristi K. Snyder ◽  
Robert G. Van Buskirk ◽  
John G. Baust

The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.


2016 ◽  
Vol 13 (6) ◽  
pp. 4911-4919 ◽  
Author(s):  
DONG-SUNG LEE ◽  
WONMIN KO ◽  
BONG-KEUN SONG ◽  
ILHONG SON ◽  
DONG-WOUNG KIM ◽  
...  

2013 ◽  
Vol 305 (3) ◽  
pp. F255-F264 ◽  
Author(s):  
Subhashini Bolisetty ◽  
Amie Traylor ◽  
Abolfazl Zarjou ◽  
Michelle S. Johnson ◽  
Gloria A. Benavides ◽  
...  

Mitochondria are both a source and target of the actions of reactive oxygen species and possess a complex system of inter-related antioxidants that control redox signaling and protect against oxidative stress. Interestingly, the antioxidant enzyme heme oxygenase-1 (HO-1) is not present in the mitochondria despite the fact that the organelle is the site of heme synthesis and contains multiple heme proteins. Detoxification of heme is an important protective mechanism since the reaction of heme with hydrogen peroxide generates pro-oxidant ferryl species capable of propagating oxidative stress and ultimately cell death. We therefore hypothesized that a mitochondrially localized HO-1 would be cytoprotective. To test this, we generated a mitochondria-targeted HO-1 cell line by transfecting HEK293 cells with a plasmid construct containing the manganese superoxide dismutase mitochondria leader sequence fused to HO-1 cDNA (Mito-HO-1). Nontargeted HO-1-overexpressing cells were generated by transfecting HO-1 cDNA (HO-1) or empty vector (Vector). Mitochondrial localization of HO-1 with increased HO activity in the mitochondrial fraction of Mito-HO-1 cells was observed, but a significant decrease in the expression of heme-containing proteins occurred in these cells. Both cytosolic HO-1- and Mito-HO-1-expressing cells were protected against hypoxia-dependent cell death and loss of mitochondrial membrane potential, but these effects were more pronounced with Mito-HO-1. Furthermore, decrement in production of tricarboxylic acid cycle intermediates following hypoxia was significantly mitigated in Mito-HO-1 cells. These data suggest that specific mitochondrially targeted HO-1 under acute pathological conditions may have beneficial effects, but the selective advantage of long-term expression is constrained by a negative impact on the synthesis of heme-containing mitochondrial proteins.


2010 ◽  
Vol 26 (5) ◽  
pp. 297-308 ◽  
Author(s):  
RM Satpute ◽  
J. Hariharakrishnan ◽  
R. Bhattacharya

Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625—1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.


2013 ◽  
Vol 127 (5) ◽  
pp. 669-680 ◽  
Author(s):  
Noriko Himori ◽  
Kotaro Yamamoto ◽  
Kazuichi Maruyama ◽  
Morin Ryu ◽  
Keiko Taguchi ◽  
...  

2020 ◽  
Author(s):  
Yahong Liu ◽  
Ying Cheng ◽  
Wei Zhang ◽  
Hongqi Tian

Abstract Oxidative stress plays a critical role in cerebral ischemia-reperfusion injury. We previously developed a powerful antioxidant, HL-008, and this study aimed to investigate the neuroprotective function of HL-008. The in vitro and in vivo efficacy of HL-008 was evaluated using a PC-12 cell oxidative stress model induced by hydrogen peroxide and a rat model of middle cerebral artery occlusion, respectively. The MTT assay was used to analyze cell viability. TTC staining, HE staining, immunofluorescence, western blot, and proteomics were used to evaluate the infarction volume, brain tissue morphology, apoptosis, inflammation, and related pathways. Indicators related to oxidative levels were mainly detected using commercial kits. HL-008 significantly reduced the cerebral infarction area induced by ischemia-reperfusion, improved the neurological score, alleviated oxidative stress and inflammation in the brain tissue, reduced glial cell activation, inhibited brain tissue apoptosis by influencing multiple signaling pathways, and had a neuroprotective effect. If HL-008 is successfully developed, it can significantly improve the quality of life of stroke patients.


Sign in / Sign up

Export Citation Format

Share Document