scholarly journals Fragility Comprehensive Assessment of Low-Rise Cold-Formed Steel Framed Wall Structure Subjected to Wind Load

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hao Zhang ◽  
Shiwei Hou ◽  
Yiming Ding ◽  
Chao Li ◽  
Pengfei Liu

This paper presents a comprehensive assessment method of the fragility of low-rise cold-formed steel (CFS) framed wall structures subjected to wind hazards considering the fragility of both the main structure and the cladding system. The effects of wind directions on the fragility of CFS framed wall structures were also studied. For the main structure, the fragility curve is established using the maximum interstory drift ratio (ISDRmax) as the performance index for assessing the wind fragility of the structure. For the cladding system, the probabilistic models of the wind load and the cladding component resistance are established based on Monte Carlo simulation, and then methods for the fragility assessment of single cladding components and the cladding system under wind hazards considering the influence of the number and arrangement of the cladding components are proposed. The results indicated that, under strong wind, the cladding system may be damaged before the required wind resistance capacity of the main structure is exhausted. In particular, the roof sheathing is the most prone to damage, followed by the stud wall. That is, before the main structure is severely damaged or collapses, the cladding systems may be severely damaged, rendering the structure unusable. Therefore, the comprehensive assessment of the fragility of this type of structure subjected to wind hazard considering the fragility of both the main structure and the cladding system is more accurate. This study is of great significance for the improvement of the wind resistance performance of CFS structures and the popularization of this type of structure.

2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


2002 ◽  
Vol 92 (3) ◽  
pp. 989-996 ◽  
Author(s):  
Kayleen S. Kott ◽  
Kent E. Pinkerton ◽  
John M. Bric ◽  
Charles G. Plopper ◽  
Krishna P. Avadhanam ◽  
...  

Rat and monkey are species that are used in models of human airway hyperresponsiveness. However, the wall structures of rat and monkey airways are different from each other, with that of the monkey more closely resembling that of humans. We hypothesized that differences in wall structure would explain differences in airway responsiveness. Using videomicrometry, we measured airway luminal area in lung slices to compare proximal and distal airway responsiveness to methacholine in the rat and monkey. The airway type was then histologically identified. Proximal airways of the young rat and monkey were equally responsive to methacholine. In contrast, respiratory bronchioles of monkeys were less responsive than were their proximal bronchi, whereas the distal bronchioles of rats were more responsive than their proximal bronchioles. Both proximal and distal airways of younger monkeys were more responsive than those of older monkeys. Airway heterogeneity in young monkeys was greatest with regard to degree of airway closure of respiratory bronchioles. We conclude that responsiveness to methacholine varies with airway wall structure and location.


2021 ◽  
Vol 34 (02) ◽  
pp. 1049-1064
Author(s):  
Valentina V. Nikiforova ◽  
Elena E. Grigoryeva ◽  
Petr V. Gulyaev ◽  
Grigoriy S. Kovrov ◽  
Nikolay N. Konstantinov

The spatial organization of productive forces, the efficient use of available facilities, and the production potential assessment of economic sectors in a given region are topical issues. The Republic of Sakha (Yakutia) is a large resource-dependent region of Russia, remarkable for the geographical dispersion of deposits over a vast territory and the complex transport and power supply infrastructures. This paper presents a comprehensive assessment of the feasibility of cluster organization in the subsoil use sector in the Republic of Sakha (Yakutia), the Russian Federation, factoring in the existing and prospective economic zoning and the existing potential. The republic was divided into zones based on a cluster framework of the subsoil users. The study used statistical data on the municipal districts and financial indicators of the extractive industry companies. The integrated method was applied in the assessment, and the performance index of the identified cluster territories was calculated on a ten-point scale. The identified zones were rated by resource and production potential. The general cluster zone performance index was calculated. It appeared feasible to cluster the extractive industry in the studied region as it can increase competitiveness of local companies and contribute to the socio-economic development of its municipal districts. The proposed method can be applied for comprehensive assessment of the subsoil use sector in northern territories.


2020 ◽  
Vol 980 ◽  
pp. 275-281
Author(s):  
Hu Jun

In order to consider the fluctuating wind load induced fatigue problem of long span suspension bridge, fatigue reliability formula is modified by assuming the fatigue life is accord with the weibull distribution. Based on the accurate bridge buffeting analysis of time history, the stress time history of components of a suspension bridge in east sea China is simulated, and then the fatigue damages and reliabilities are calculated. The results indicate that the main cables and hangers have enough fatigue reliability under the fluctuating wind load, the fatigue failure will not occur; the stiffening girder has larger fatigue damage, under 40 / (m.s-1) mean wind speed action, the girder of mid-support section’s average fatigue life is only 3.103 years, so the girder’s damage under strong wind action should be taken seriously.


2018 ◽  
Vol 10 (8) ◽  
pp. 2835 ◽  
Author(s):  
Jihui Yuan

The dynamic thermal characteristics of external wall structures are directly related to indoor thermal comfort and energy savings in buildings; they are also complicated and worth investigating. Thermal insulation in external wall structures has become a popular topic of investigation in the domain of building energy efficiency. This study aims to find the impact of insulation type and thickness on the dynamic thermal characteristics of external wall structures using a homogeneous multi-layer building external wall structure and three types of insulation materials that are widely used in Japan. The impact of insulation type and thickness on seven thermal characteristics of external walls, including thermal transmittance, decrement factor or amplitude attenuation, time lag, thermal admittance, time lead for thermal admittance, surface factor, and thermal capacity, was evaluated by numerical methods in this study. It was shown that insulation type and thickness would have a significant effect on thermal transmittance, decrement factor and time lag, but yield no significant change in thermal admittance, time lead for thermal admittance, surface factor, and the thermal capacity of external wall structures.


Author(s):  
Toshifumi Fujiwara ◽  
Kazuhiro Yukawa ◽  
Hiroshi Sato ◽  
Kazuhisa Otsubo ◽  
Tomoki Taniguchi

Liquid Natural Gas resource development is often conducted worldwide. Recently the drilling area has gradually expanded from shallow sea area to the deep ocean. A Floating LNG facility (FLNG) and a LNG carrier ship (LNG) are assumed to operate in the open sea expected to wind, wave and current. In this situation, an operational capability evaluation of the LNG would be needed to grasp the operational weather limitation. The effect of each weather element, i.e. wind, wave and current, giving manoeuvring effect to ships, is expected to assess exactly as external loads. In such a situation, wind interaction effect under the operating condition that a FLNG and a LNG are in same closed area is not clearly understood. This paper treats and proposes one estimation method of wind load for the operation of side-by-side offloading including interaction effect of a FLNG and a LNG. The proposed wind load estimation method based on the wind tunnel experiments represents the shielding effect of the LNG behind the FLNG. Operational assessment on ship manoeuvring under strong wind is calculated using the proposed wind load method in the final stage.


2017 ◽  
Vol 873 ◽  
pp. 259-263
Author(s):  
Hao Zhang ◽  
Zi Hang Zhang ◽  
Yong Qiang Li

The dynamic behavior of the prefabricated and cast in situ concrete shear wall structures subjected to seismic loading is investigated by finite element method. This paper adopted a prefabricated concrete shear wall in a practical engineering. The Precise finite element models of prefabricated and cast in situ concrete shear wall were established respectively by ABAQUS. The damaged plasticity model of concrete and kinematic hardening model of reinforcing steel were used. The top displacement, top acceleration, story drift ratio and base shear forceof prefabricated and cast in situ concrete shear wall under different seismic excitation were compared and analyzed. The earthquake resistant behaviorsof the two kinds of structuresare analyzed and compared. Results show that the performances of PC structure were equal to the cast-in-situ ones.


Sign in / Sign up

Export Citation Format

Share Document