scholarly journals Effect of Eu3+ Concentration on the BaAl2O4/CaAl4O7: x% Eu3+ (0 ≤ x ≤ 5.5) Mixed-Phase Nanophosphors Synthesized Using Citrate Sol-Gel Method

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bamba Mahman ◽  
Mpho Enoch Sithole

A series of undoped mixed-phase BaAl2O4/CaAl4O7 (hereafter called BC) and doped BC: x% Eu3+ (0 < x ≤ 5.5) nanophosphors were successfully prepared by the citrate sol-gel technique. Their structure, morphology, and optical properties were studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD and SEM showed that all the BC:x% Eu3+ samples consisted of the crystalline structure of the mixed phases of both the BaAl2O4 and CaAl4O7 materials. The structure resembles more that of the BaAl2O4 than the CaAl4O7 phase. The TEM results suggest that the crystallite sizes are in the nanometer scale with rod-like particles. PL results showed multiple emission peaks located at 436, 590, 616, 656, and 703 nm, which were assigned to the intrinsic defects within the BC matrix, 5D0 ⟶ 7F1, 5D0 ⟶ 7F2, 5D0 ⟶ 7F3, and 5D0 ⟶ 7F4 transitions of Eu3+, respectively. The decay curves evidently showed that the nanophosphors have persistent luminescence. The Commission Internationale de l’Eclairage (CIE) analysis revealed that doping has tuned the emission colour from blue to orange-red. The results indicate that the Eu3+-doped samples can potentially be used in the orange/red-emitting phosphors.

2004 ◽  
Vol 19 (5) ◽  
pp. 1504-1508 ◽  
Author(s):  
Bin-Siang Tsai ◽  
Yen-Hwei Chang ◽  
Yu-Chung Chen

Nano-grained phosphors of Eu3+-doped MgGa2O4 crystallites were prepared by sol-gel technique. The characterization and optical properties of luminescent MgGa2O4:Eu3+ powders have been investigated. The dried sol-gel powders were calcined in air at different temperature from 600 to 1000 °C for 5 h. The x-ray diffraction profiles showed that the MgGa2O4:Eu3+ powders began to crystallize around 600 °C and formed stable MgGa2O4 phase in the temperature range of 600–900 °C. The transmission electron microscopy morphology observations revealed that the fired powders exhibit small grain size less than 20 nm. In the PL studies, under ultraviolet (394 nm) excitation, the calcined powders emitted bright red luminescence (615 nm, 5D0→7F2), and the powders fired at 900 °C were found to have the maximum photoluminescence intensity. The quenching concentration of Eu3+ in MgGa2O4 crystallites was also indicated to be about 5∼6 mol%.


2010 ◽  
Vol 177 ◽  
pp. 257-259
Author(s):  
Shu Fang Zheng ◽  
Guo Xuan Xiong ◽  
Hai Qing Huang ◽  
Liu Jun Luo

Nano-porous Barium ferrite (BaFe12O19) nanoparticles were synthesized by sol-gel technique using CTAB as template. The structure, morphology, and magnetic properties of samples were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results show that particles size are about 45 nm to 65 nm. And the nanoparticles show a saturation magnetization (Ms) of 62.831 emu/g, a coercivity (Hc) of 5481.0 Oe and a remament magnetization (Mr) of 33.083 emu/g.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2011 ◽  
Vol 471-472 ◽  
pp. 179-184 ◽  
Author(s):  
Raharjo Jarot ◽  
Andanastuti Muchtar ◽  
Wan Ramli Wan Daud ◽  
Norhamidi Muhamad ◽  
Edy Herianto Majlan

Composite cathodes made of perovskite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and SDC carbonates (SDC-(Li/Na)2CO3) were investigated in relation to their structure, morphology, thermal expansion coefficient and porosity. As a first step, the LSCF powder was prepared by sol-gel technique. This was followed by the preparation of the LSCF-SDC carbonates composite cathode by mixing the LSCF with SDC-(Li/Na)2CO3 electrolyte via solid state reaction in various compositions, i.e. 30, 40 and 50 wt.%, namely 70LSCF-30SDC7030, 60LSCF-40SDC7030 and 50LSCF-50SDC7030, respectively. The powder mixtures were then calcined at 680oC. The resultant powder was fine with surface area of about 3.39-7.42 m2/g and particle size of 0.56-0.66µm. The powder consists of two distinct phases, i.e. LSCF and SDC-(Li/Na)2CO3 as confirmed with x-ray diffraction. The microstructures were observed under scanning electron microscopy (SEM). Increasing the amount of the SDC-(Li/Na)2CO3 electrolyte in the composite cathode was found to bring the thermal expansion of the cathode closer to that of the electrolyte. The cathode pellets were later compacted at different pressures (27, 32 and 37 MPa) and sintered at 600oC. The optimum porosity (20.99-24.98%) was achieved for samples with SDC-(Li/Na)2CO3 content of 30-50% sintered at 600oC and cold pressed at 37 MPa.


2018 ◽  
Vol 281 ◽  
pp. 859-864
Author(s):  
Yan Xing ◽  
Meng Fei Zhang ◽  
Tian Jun Li ◽  
Wei Pan

La2NiO4+σ nanofibers exhibiting typical Ruddlesden–Popper structure (K2NiO4) were fabricated by a facile electrospinning method. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the structure, morphology and crystal process of the La2NiO4+σ nanofibers. For electrical properties measurement, uniaxially aligned nanofibers were directly collected and assembled into electrode. In our research, La2NiO4+σ phase forms above 873K with no impurity phase emerges during the thermal treatments. The nanofibers are smooth and uniform throughout the entire length and the grain is growing as calcination temperature increases. Furthmore, the La2NiO4+σ nanofibers own high mixed conductivity at 773K, laying good foundation for intermediate temperature solid oxide fuel cells application.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2007 ◽  
Vol 22 (5) ◽  
pp. 1182-1187
Author(s):  
Amita Verma ◽  
A.K. Srivastava ◽  
N. Karar ◽  
Harish Chander ◽  
S.A. Agnihotry

Nanostructured thermally treated xerogels have been synthesized using a sol-gel process involving cerium (Ce) chloride heptahydrate and titanium (Ti) propoxide mixed in different Ce:Ti molar ratios. Structural features of the xerogels have been correlated with their photoluminescence (PL) response. The crystallite sizes in the samples lie in the nanorange. The x-ray diffraction and transmission electron microscopy results have confirmed the coexistence of CeO2 and TiO2 nanocrystallites in these xerogels. In general, a decrease in the CeO2 crystallite size and an increase in the TiO2 crystallite size are observed in the xerogels as a function of Ti content. Scanning electron microscopy results have evidenced the evolution of ordered structure in the xerogels as a function of TiO2 content. Although both of the phases (CeO2 and TiO2) have exhibited PL in ultraviolet and visible regions, the major luminescence contribution has been made by the CeO2 phase. The largest sized CeO2 crystallites in 1:1 thermally treated xerogel have led to its highest PL response. PL emission in the xerogels is assigned to their nanocrystalline nature and oxygen vacancy-related defects.


1998 ◽  
Vol 541 ◽  
Author(s):  
M. Linnik ◽  
O. Wilson ◽  
A. Christou

AbstractThe preparation and characterization of thick PLZT films for spatial phase modulator applications are reported. Films were fabricated on LSCO/LAO substrates by a sol-gel technique using multiple heat-treatment parameters. The crystal quality of PLZT 9/65/35 films was investigated by X-ray diffraction and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document