scholarly journals Study of the Structure and Properties of ZnS Utilized in a Fluorescence Biosensor

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Y. Ren ◽  
H. Zhou ◽  
X. Wang ◽  
Q. W. Liu ◽  
X. D. Hou ◽  
...  

ZnS materials have been widely used in fluorescence biosensors to characterize different types of stem cells due to their excellent fluorescence effect. In this study, ZnS was prepared by vulcanizing nano-Zn particles synthesized using a DC arc plasma. The composition and structure of the ZnS materials were studied by X-ray diffraction (XRD), and their functional group information and optical properties were investigated by using IR spectrophotometry and UV-vis spectrophotometry. It has been found that the synthesized materials consist of Zn, cubic ZnS, and hexagonal ZnS according to the vulcanization parameters. Crystalline ZnS was gradually transformed from a cubic to a hexagonal structure, and the cycling properties first increase, then decrease with increasing sulfurization temperature. There is an optimal curing temperature giving the best cycling performance and specific capacity: the material sulfurized thereat mainly consists of cubic β-ZnS phase with a small quantity of Zn and hexagonal α-ZnS. The cubic phase ZnS has better conductivity than hexagonal ZnS, as evinced by electrochemical impedance spectroscopy (EIS). The ZnS (as prepared) shows board absorption, which can be used in fluorescence biosensors in cell imaging systems.

2016 ◽  
Vol 852 ◽  
pp. 894-900
Author(s):  
Tian Chen ◽  
Jin Pan ◽  
Ren Cheng Shen ◽  
Jian Qiu Deng ◽  
Qing Rong Yao ◽  
...  

The Sn–Cu nanocomposites composing of Sn, Cu6Sn5, Cu3Sn and SnO2 are synthesized by a facile precipitation method. Their morphologies and structures are characterized using X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM. The electrochemical properties are investigated by charge–discharge testing, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods. The sample with a Sn/Cu ratio of 5:3 delivers good cycling stability. The discharge specific capacity is 447.5 mAhg-1 after 70 cycles at a current density of 100 mAg-1 and the coulombic efficiency is beyond 95%. The superior rate and cycling performance of Sn–Cu nanocomposites are also demonstrated, which may be rooted in their nanostructure and phase composition.


2015 ◽  
Vol 814 ◽  
pp. 81-85 ◽  
Author(s):  
Qian Qian Li ◽  
Run Hua Fan ◽  
Ke Lan Yan ◽  
Kai Sun ◽  
Xu Ai Wang ◽  
...  

The precursor Ni (OH)2 was synthesized by a simple hydrothermal method with hexamethylenetetramine ((CH2)6N4) as precipitant and template, and then NiO was gained after calcination. The phase and morphology of the synthesized product were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), and the electrochemical capacitive characterization was performed using cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS) in a 6mol/L KOH aqueous solution electrolyte. The result shows that spherical NiO without impurity was synthesized, the average diameter of the spheres is 5 um and these spheres were constructed by the interactive arrangement of many nanoflakes in three dimensions. This kind of NiO shows the typical electrochemical characteristics of pseudo capacitance with high specific capacity and excellent rate capability. The specific capacity can reach 515F/g at the current density of 1A/g


2018 ◽  
Vol 528 ◽  
pp. 263-270 ◽  
Author(s):  
Mohammad Yaser Khani Meynaq ◽  
Britta Lindholm-Sethson ◽  
Solomon Tesfalidet

CrystEngComm ◽  
2018 ◽  
Vol 20 (45) ◽  
pp. 7266-7274 ◽  
Author(s):  
Yueying Zhao ◽  
Wanwan Wang ◽  
Mengna Chen ◽  
Ruojie Wang ◽  
Zhen Fang

ZnS@MoS2 hollow polyhedrons display outstanding cycling performance and high reversible specific capacity in LIB anodes.


2019 ◽  
Vol 7 (7) ◽  
pp. 3228-3237 ◽  
Author(s):  
Yu Ouyang ◽  
Haitao Ye ◽  
Xifeng Xia ◽  
Xinyan Jiao ◽  
Guangmin Li ◽  
...  

The specific capacity and cycling performance of the hierarchical electrode were significantly enhanced due to the sulfur doping into Co3O4.


Nanoscale ◽  
2019 ◽  
Vol 11 (20) ◽  
pp. 10097-10105 ◽  
Author(s):  
Pengcheng Du ◽  
Wenli Wei ◽  
Yuman Dong ◽  
Dong Liu ◽  
Qi Wang ◽  
...  

PPy-coated MnO2 nanotubes were fabricated as a highly efficient sulfur host. Hollow interior of the MnO2 nanotubes and the polypyrrole outer layer can effectively improve the specific capacity and maintain an extremely stable cycling performance.


2012 ◽  
Vol 554-556 ◽  
pp. 379-384
Author(s):  
Da Gang Wang ◽  
Li Ren Fan ◽  
Chou Fan

Pyrite utrafine powder was yielded through processing natural pyrite, including gravity separation, flotation and airflow grinding, which the contents of Fe and S are 45.30wt% and 50.95wt% respectively and the mean grain size is 13μm. Pyrite powder modified by fatty acid salt A was investigated by TG/DSC, XPS and XRD. The results indicate that the phase of powder is mostly pyrite FeS2 coating with organic modifier, and S exists in the form of [S2]2- principally on modified pyrite surface. Furthermore, electrochemical impedance spectroscopy, cyclic voltammetry measurement and galvanotactic current charge and discharge methods were applied to exhibit the electrochemical performance of pyrite sample. The results show that modified pyrite has lower charge transfer resistance and higher conductivity than that of natural pyrite, and the specific discharge capacity is as high as 850mAh/g under 0.354A current at room temperature and the cutoff of 0.5V closing to the theoretical specific capacity of pyrite (890mA•h/g), and the voltage plateau is 1.44V.


2012 ◽  
Vol 455-456 ◽  
pp. 884-888
Author(s):  
Ji Yan ◽  
Zhi Yuan Tang ◽  
Hui Xia Ren ◽  
Li Ma

The Li3V2(PO4)3/C cathode material is prepared by fast microwave synthesis route using PEG as carbon source. The samples were characterized by X-ray diffraction (XRD), galvanostatically charge/discharge test and electrochemical impedance spectroscopy (EIS). XRD result shows that the material was well crystallized and the structure was indexed as a monoclinic Li3V2(PO4)3/C. The electrochemical tests of material exhibit good cycling performance, which delivered a high initial discharge of 125.2 mAh g-1 at 0.2C and the retention of capacity was 92.4% after 50 cycles. From this study, the PEG-based microwave preparation method is regarded as a feasible route for the preparation of Li3V2(PO4)3/C cathode material.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


2020 ◽  
Vol 10 (10) ◽  
pp. 1697-1703
Author(s):  
Zebin Wu ◽  
Wei Zhou ◽  
Zhen Liu ◽  
Yijie Zhou ◽  
Guilin Zeng ◽  
...  

Flower-like C@V2O5 microspheres with high specific capacity were synthesized by a facile hydrothermal method. The microstructure, specific capacity and electrochemical properties of C@V2O5 microspheres were studied. Results showed that the C@V2O5 microspheres with a diameter of ∼3 m are covered over by V2O5 nanosheets, and therefore have a large surface area which is almost 5 times higher than that of pure V2O5 powders. Moreover, the initial specific capacity of C@V2O5 microsphere is as high as 247.42 mAh · g–1, and after 100 cycles, the capacity retention rate is still 99.4%. Compared with pure V2O5, flower-like C@V2O5 microspheres show higher discharge specific capacity, better rate performance and more stable cycling performance.


Sign in / Sign up

Export Citation Format

Share Document