scholarly journals On Locating-Dominating Set of Regular Graphs

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Anuwar Kadir Abdul Gafur ◽  
Suhadi Wido Saputro

Let G be a simple, connected, and finite graph. For every vertex v ∈ V G , we denote by N G v the set of neighbours of v in G . The locating-dominating number of a graph G is defined as the minimum cardinality of W   ⊆   V G such that every two distinct vertices u , v ∈ V G \ W satisfies ∅ ≠ N G u ∩ W ≠ N G v ∩ W ≠ ∅ . A graph G is called k -regular graph if every vertex of G is adjacent to k other vertices of G . In this paper, we determine the locating-dominating number of k -regular graph of order n , where k = n − 2 or k = n − 3 .

2020 ◽  
Vol 2 (2) ◽  
pp. 105-110
Author(s):  
Emily L Casinillo ◽  
Leomarich F Casinillo ◽  
Jorge S Valenzona ◽  
Divina L Valenzona

Let T_m=(V(T_m), E(T_m)) be a triangular grid graph of m ϵ N level. The order of graph T_m is called a triangular number. A subset T of V(T_m) is a dominating set of T_m  if for all u_V(T_m)\T, there exists vϵT such that uv ϵ E(T_m), that is, N[T]=V(T_m).  A dominating set T of V(T_m) is a secure dominating set of T_m if for each u ϵ V(T_m)\T, there exists v ϵ T such that uv ϵ E(T_m) and the set (T\{u})ꓴ{v} is a dominating set of T_m. The minimum cardinality of a secure dominating set of T_m, denoted by γ_s(T_m)  is called a secure domination number of graph T_m. A secure dominating number  γ_s(T_m) of graph T_m is a triangular secure domination number if γ_s(T_m) is a triangular number. In this paper, a combinatorial formula for triangular secure domination number of graph T_m was constructed. Furthermore, the said number was evaluated in relation to perfect numbers.


Author(s):  
Mohammed A. Abdlhusein

Let [Formula: see text] be a finite graph, simple, undirected and has no isolated vertex. A dominating subset [Formula: see text] of [Formula: see text] is said a bi-dominating set, if every vertex of it dominates two vertices of [Formula: see text]. The bi-domination number of [Formula: see text], denoted by [Formula: see text] is the minimum cardinality over all bi-dominating sets in [Formula: see text]. In this paper, a certain modified bi-domination parameter called doubly connected bi-domination and its inverse are introduced. Several bounds and properties are studied here. These modified dominations are applied and evaluated for several well-known graphs and complement graphs.


10.37236/8345 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nader Jafari Rad

A subset $S$ of vertices of a graph $G$ is a dominating set of $G$ if every vertex in $V(G)-S$ has a neighbor in $S$. The domination number $\gamma(G)$ of $G$ is the minimum cardinality of a dominating set of $G$. In this paper, we obtain new (probabilistic) upper bounds for the domination number of a graph, and improve previous bounds given by Arnautov (1974), Payan (1975), and Caro and Roditty (1985) for any graph, and Harant, Pruchnewski and Voigt (1999) for regular graphs.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
V. R. Girish ◽  
P. Usha

<p>A set <em>D</em> - <em>V</em> is a dominating set of <em>G</em> if every vertex in <em>V - D</em> is adjacent to some vertex in <em>D</em>. The dominating number γ(<em>G</em>) of <em>G</em> is the minimum cardinality of a dominating set <em>D</em>. A dominating set <em>D</em> of a graph <em>G</em> = (<em>V;E</em>) is a split dominating set if the induced graph (<em>V</em> - <em>D</em>) is disconnected. The split domination number γ<em><sub>s</sub></em>(<em>G</em>) is the minimum cardinality of a split domination set. In this paper we have introduced a new method to obtain the split domination number of grid graphs by partitioning the vertex set in terms of star graphs and also we have<br />obtained the exact values of γ<em>s</em>(<em>G<sub>m;n</sub></em>); <em>m</em> ≤ <em>n</em>; <em>m,n</em> ≤ 24:</p>


2020 ◽  
Vol 8 (5) ◽  
pp. 4579-4583

A set S of vertices in a connected graph is called a geodetic set if every vertex not in lies on a shortest path between two vertices from . A set of vertices in is called a dominating set of if every vertex not in has at least one neighbor in . A set is called a geodetic global dominating set of if is both geodetic and global dominating set of . The geodetic global dominating number is the minimum cardinality of a geodetic global dominating set in . In this paper we determine the geodetic global domination number of the join of two graphs.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{&#x0394;}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2021 ◽  
pp. 97-104
Author(s):  
M. B. Abrosimov ◽  
◽  
S. V. Kostin ◽  
I. V. Los ◽  
◽  
...  

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


Sign in / Sign up

Export Citation Format

Share Document