scholarly journals Experimental Study of the Dynamic Shear Modulus Ratio and Damping Ratio of the Quaternary Sedimentary Soils in the Offshore Areas of the Yellow Sea

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yi Fang ◽  
Yuejun Lv ◽  
Dandan Xu ◽  
Yanju Peng ◽  
Xingyuan Zhou

The effects of marine and continental sedimentary environments and geological ages on the dynamic shear modulus ratio and damping ratio of the Quaternary sedimentary soils in the offshore areas of the Yellow Sea were analyzed by using a resonant column device (GCTS, USA). The results show the following: (1) The G max of various marine soils increases with the depth and shows a typical linear relationship. (2) The marine transgression has significantly different effects on the dynamic shear modulus ratio versus the shear strain amplitude curves (i.e., G / G max ~ γ a curves) and the damping ratio versus the shear strain amplitude curves (i.e., λ ~ γ a curves) of the different soil types in the offshore areas of the Yellow Sea. The effects of marine transgression were strong on clays, moderate on silty clays, and minor on silts. (3) The geological ages have noticeable effects on the G / G max ~ γ a curves of the tested marine silty clays, marine silts, and continental silty clays, but the effects of geological ages on the λ ~ γ a curves are minimal. The fitting parameters and recommended empirical equations of the G / G max ~ γ a and λ ~ γ a curves for each type of the tested soils (silty clay, clay, and silt) were obtained mirroring the effects of sedimentary environments and geological ages.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qian Wang ◽  
Jun Wang ◽  
Xiumei Zhong ◽  
Haiping Ma ◽  
Xiaowei Xu

Metastable loess soils can deform, inducing geological and engineering disasters. Therefore, the behavior of the loess under dynamic load is gaining massive attention from researchers to improve the strength of the soils. Fly ash mixed with loess can improve strength and reduce construction costs and environmental pollution. Moreover, it has strong economic and social benefits. This paper investigates the influence of fly ash on the dynamic properties of the modified loess through a series of dynamic triaxial tests of the fly ash modified loess with different fly ash contents. The treated soil samples were prepared using a static compaction method in both ends and cured for 28 days. The dynamic shear modulus ratio, the damping ratio, and the dynamic residual strain of the modified loess were analyzed. The variation characteristics of the dynamic shear modulus ratio and damping ratio with the dynamic shear strain of the fly ash modified loess were obtained. The effect of fly ash content on the dynamic nonlinear parameters of the modified loess was also investigated. In addition, the relationship between the dynamic residual strain and the fly ash content was discussed. The results show that the dynamic shear modulus ratio of fly ash modified loess decreases nonlinearly with the increase in the dynamic shear strain. However, the attenuation rate difference of the curves is small. The damping ratio increases gradually with increasing dynamic shear strain. Under a certain dynamic shear strain level, the damping ratio decreases with the increase in the fly ash content. The dynamic residual strain increases with the increase in the dynamic stress. However, it decreases with the increase in the fly ash content. When the fly ash content is between 10% and 20%, the dynamic residual strain of fly ash modified loess is reduced rapidly. However, when the fly ash content exceeds 20%, the dynamic residual strain decreases slowly. The fly ash content of 20% could be suggested as an optimal content for seismic resistance of the loess foundation.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2020 ◽  
Vol 12 (4) ◽  
pp. 1616 ◽  
Author(s):  
Xianwen Huang ◽  
Aizhao Zhou ◽  
Wei Wang ◽  
Pengming Jiang

In order to support the dynamic design of subgrade filling engineering, an experiment on the dynamic shear modulus (G) and damping ratio (D) of clay–gravel mixtures (CGMs) was carried out. Forty-two groups of resonant column tests were conducted to explore the effects of gravel content (0%, 10%, 20%, 30%, 40%, 50%, and 60%, which was the mass ratio of gravel to clay), gravel shape (round and angular gravels), and confining pressure (100, 200, and 300 kPa) on the dynamic shear modulus, and damping ratio of CGMs under the same compacting power. The test results showed that, with the increase of gravel content, the maximum dynamic shear modulus of CGMs increases, the referent shear strain increases linearly, and the minimum and maximum damping ratios decrease gradually. In CGMs with round gravels, the maximum dynamic shear modulus and the maximum damping ratio are greater, and the referent shear strain and the minimum damping ratio are smaller, compared to those with angular gravels. With the increase of confining pressure, the maximum dynamic shear modulus and the referent shear strain increase nonlinearly, while the minimum and maximum damping ratios decrease nonlinearly. The predicting equation for the dynamic shear modulus and the damping ratio of CGMs when considering confining pressure, gravel content, and shape was established. The results of this research may put forward a solid foundation for engineering design considering low-strain-level mechanical performance.


2019 ◽  
Vol 31 (10) ◽  
pp. 04019244 ◽  
Author(s):  
Ruxin Jing ◽  
Feng Zhang ◽  
Decheng Feng ◽  
Xueyan Liu ◽  
Athanasios Scarpas

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kaisheng Chen ◽  
Qinqin Wang ◽  
Dipu Luo ◽  
Bo Zhou ◽  
Kun Zhang

Rubber powder formed from discarded tire rubber is mixed with red clay to form a rubber-red clay mixture. The dynamic triaxial test was carried out on the mixtures under different conditions. The effects of rubber content, rubber particle size, moisture content of mixed soil, compactness, confining pressure, and vibration frequency on shear strain relation, dynamic shear modulus, and damping ratio of the mixture were investigated. The results show that under the same dynamic strain, the dynamic shear stress-strain curve of rubber mixed soil decreases with the increase in rubber particle content and moisture content and decrease in rubber particle size. On the other hand, it increases with the increase in compactness, confining pressure, and vibration frequency, and as the dynamic strain increases, the τd-γd curve becomes more nonlinear. In addition, with the increase in the rubber particle content, the dynamic shear modulus decreased while the damping ratio increased. When the content was 2%, the change was fastest. After continued addition, it gradually became stable, and when the decrease in rubber particle size also shows the same pattern, 2.00 mm rubber-red clay mixture shows better structure. The water content has great influence on dynamic shear modulus and damping ratio of rubber-red clay mixtures. With the increase in compactness, confining pressure, and vibration frequency, the interaction between mixed soil particles was enhanced, the dynamic shear modulus increased, and the damping ratio decreased.


Sign in / Sign up

Export Citation Format

Share Document