scholarly journals Novel Compact Design and Investigation of a Super Wideband Millimeter Wave Antenna for Body-Centric Communications

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
H. M. Arifur Rahman ◽  
Mohammad Monirujjaman Khan ◽  
Mohammed Baz ◽  
Mehedi Masud ◽  
Mohammed A. AlZain

This paper presents a novel design for a multiple band millimeter wave antenna with a wide active region in the extremely high frequency (EHF) range. The antenna's performance was tested at three evenly separated frequencies: 60 GHz within the V-band region, 80 GHz within the E-band region, and 100 GHz. Simulation exhibits satisfactory results in terms of gain and efficiency, although the efficiency falling tendency for higher frequency persists. As millimeter wave antennas have miniature-like dimensions and low penetration depth into human body layers, the performance of these antennas is less disturbed by the presence of a human body, making them ideal for body-centric wireless communication (BCWC) applications. Thus, a human body model was created virtually with the necessary property data. Simulations are repeated at the same frequencies as before, with the antenna kept close to the constructed human body model. The results were promising as the gains found increased radiation patterns and return loss curves remained almost identical, except some efficiencies that were considered. Some H-plane radiation patterns are changed by the presence of a human body. Although all three frequencies present satisfactory results, 60 GHz is found to be more balanced, but 100 GHz shows better gain and directivity. Multiple band operability makes this antenna suitable for various applications. Finally, a distance-based analysis was conducted to realize the in-depth characteristics of the antenna by placing the antenna at five different gaps from the human body. The result verifies the antenna’s category as suitable for body-centric communications.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sandhiya Reddy Govindarajulu ◽  
Rimon Hokayem ◽  
Elias A. Alwan

2011 ◽  
Vol 3 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Christophe Calvez ◽  
Romain Pilard ◽  
Christian Person ◽  
Jean-Philippe Coupez ◽  
François Gallée ◽  
...  

Antenna on chip (AoC) and antenna in package (AiP) solutions for millimeter-wave (mmWave) applications and their characterization are presented in this paper. Antenna integration on low resistivity (LR) and high resistivity (HR) silicon substrate are expected. And, in a packaging approach, the combination of antenna on silicon with a material, which has the effect of a “lens”, allowing increasing gain is presented. In a second part, to satisfy beamforming capabilities, a hybrid integration of the antenna on silicon and glass substrates is proposed.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Lei Xiong ◽  
Haiyang Miao ◽  
Zhiyi Yao

The propagation channel around human body will fluctuate due to the body effects, so it is essential to investigate the body channel. As an important method of channel modeling, ray-tracing (RT) is affected by the human body model. In this paper, a realistic human body is modeled with the idea of greedy algorithm. Based on the RT simulation and measurement results of path loss (PL), we derive the approximate shapes of the torso, head, arms, and legs, and propose a reference human body model whose credibility and accuracy have been verified at 2.4 GHz and 60 GHz. These results prove that the simulation results based on the reference human body model are in good agreement with the measurement values. In addition, the reference human body model can be adjusted according to the realistic dimension data of body.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Waleed Tariq Sethi ◽  
Hamsakutty Vettikalladi ◽  
Majeed A. Alkanhal

A compact high gain and wideband millimeter wave (MMW) antenna for 60 GHz communication systems is presented. The proposed antenna consists of a multilayer structure with an aperture coupled microstrip patch and a surface mounted horn integrated on FR4 substrate. The proposed antenna contributes impedance bandwidth of 8.3% (57.4–62.4 GHz). The overall antenna gain and directivity are about 11.65 dBi and 12.51 dBi, which make it suitable for MMW applications and short-range communications. The proposed antenna occupies an area of 7.14 mm × 7.14 mm × 4 mm. The estimated efficiency is 82%. The proposed antenna finds application in V-band communication systems.


Sign in / Sign up

Export Citation Format

Share Document