scholarly journals Research into Power Transformer Health Assessment Technology Based on Uncertainty of Information and Deep Architecture Design

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuguo Gao ◽  
Jun Zhao ◽  
Yunpeng Liu ◽  
Ziqiang Xu ◽  
Zhe Li ◽  
...  

The uncertainty of the evaluation information is likely to affect the accuracy of the evaluation, when conducting a health evaluation of a power transformer. A multilevel health assessment method for power transformers is proposed in view of the three aspects of indicator criterion uncertainty, weight uncertainty, and fusion uncertainty. Firstly, indicator selection is conducted through the transformer guidelines and engineering experience to establish a multilevel model of transformers that can reflect the defect type and defect location. Then, a Gaussian cloud model is used to solve the uncertainty of the indicator criterion boundary. Based on association rules, AHP, and variable weights, the processed weights are calculated from the update module to obtain comprehensive weights, which overcomes the uncertainty of the weights. Improved DSmT theory is used for multiple evidence fusion to solve the high conflict and uncertainty problems in the fusion process. Finally, through actual case analysis, the defect type, defect location, and overall state of the transformer of the device are obtained. By comparing with many defect cases in a case-study library, the evaluation accuracy rate is found to reach 96.21%, which verifies the practicability and efficiency of the method.

2013 ◽  
Vol 20 (3) ◽  
pp. 519-530 ◽  
Author(s):  
Chen Lu ◽  
Qian Sun ◽  
Laifa Tao ◽  
Hongmei Liu ◽  
Chuan Lu

Vibration signals extracted from rotating parts of machinery carry a lot of useful information about the condition of operating machine. Due to the strong non-linear, complex and non-stationary characteristics of vibration signals from working bearings, an accurate and reliable health assessment method for bearing is necessary. This paper proposes to utilize the selected chaotic characteristics of vibration signal for health assessment of a bearing by using self-organizing map (SOM). Both Grassberger-Procaccia algorithm and Takens' theory are employed to calculate the characteristic vector which includes three chaotic characteristics, such as correlation dimension, largest Lyapunov exponent and Kolmogorov entropy. After that, SOM is used to map the three corresponding characteristics into a confidence value (CV) which represents the health state of the bearing. Finally, a case study based on vibration datasets of a group of testing bearings was conducted to demonstrate that the proposed method can reliably assess the health state of bearing.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 794
Author(s):  
Jing Yuan ◽  
Xiaohui Zhao ◽  
Giwa Abdulmoseen Segun ◽  
Mohammadtaghi Vakili ◽  
Lexuan Zhong

It is necessary to consider all aspects of environmental factors when assessing the health impact of an eco-building environment on its occupants. However, the multi-criteria and imprecise nature of the indoor-environment in the eco-buildings has caused difficulties in quantifying the indoor environmental pollution level. This paper describes the optimal classification and priority weight methods, which are particularly useful for assessing the indoor environmental quality (IEQ) of an eco-building to demonstrate its innovative applications. The analytic hierarchy process (AHP) was used to set up the strategic decision-making evaluation system for computing the indoor environment index (IEI) risk ranking of eco-buildings. Combined with this, a Microsoft Delphi-based IEQ intelligent forecasting software simulations package was developed, and the innovative application of indoor environmental comprehensive assessment was verified by a case study in Shanghai. The evaluation result was analyzed by the priority weight methods and the AHP decision-making system noted above. This health assessment method and system provides an innovative way for the indoor environment risk evaluation of eco-buildings and is helpful to standardize the local building market.


2021 ◽  
Vol 19 (1) ◽  
pp. 309-330
Author(s):  
Bo Wu ◽  
◽  
Weixing Qiu ◽  
Wei Huang ◽  
Guowang Meng ◽  
...  

<abstract> <p>The tunnel collapse is one of the most frequent and harmful geological hazards during the construction of highway rock tunnels. As for reducing the occurrence probability of tunnel collapse, a new dynamic risk assessment methodology for the tunnel collapse was established, which combines the Cloud model (CM), the Membership function, and the Bayesian network (BN). During the preparation phase, tunnel collapse risk factors are identified and an index system is constructed. Then, the proposed novel assessment method is used to evaluate the probability of tunnel collapse risk for on-site construction. The probability of tunnel collapse risk in the dynamic process of construction can provide real-time guidance for tunnel construction. Moreover, a typical case study of the Yutangxi tunnel is performed, which belongs to the Pu-Yan Highway Project (Fujian, China). The results show that the dynamic evaluation model is well validated and applied. The risk value of tunnel collapse in a construction cycle is predicted successfully, and on-site construction is guided to reduce the occurrence of tunnel collapse. Besides, it also proves the feasibility of the dynamic evaluation method and its application potential.</p> </abstract>


2020 ◽  
Vol 34 (5) ◽  
pp. 627-640 ◽  
Author(s):  
Shi Xianwu ◽  
Qiu Jufei ◽  
Chen Bingrui ◽  
Zhang Xiaojie ◽  
Guo Haoshuang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1398
Author(s):  
Xinfang Wang ◽  
Rosie Day ◽  
Dan Murrant ◽  
Antonio Diego Marín ◽  
David Castrejón Botello ◽  
...  

To improve access to affordable, reliable and sustainable energy in rural areas of the global south, off-grid systems using renewable generation and energy storage are often proposed. However, solution design is often technology-driven, with insufficient consideration of social and cultural contexts. This leads to a risk of unintended consequences and inappropriate systems that do not meet local needs. To address this problem, this paper describes the application of a capabilities-led approach to understanding a community’s multi-dimensional energy poverty and assessing their needs as they see them, in order to better design suitable technological interventions. Data were collected in Tlamacazapa, Mexico, through site visits and focus groups with men and women. These revealed the ways in which constrained energy services undermined essential capabilities, including relating to health, safety, relationships and earning a living, and highlighted the specific ways in which improved energy services, such as lighting, cooking and mechanical power could improve capabilities in the specific context of Tlamacazapa. Based on these findings, we propose some potential technological interventions to address these needs. The case study offers an illustration of an assessment method that could be deployed in a variety of contexts to inform the design of appropriate technological interventions.


Author(s):  
Zuzhen Ji ◽  
Dirk Pons ◽  
John Pearse

Successful implementation of Health and Safety (H&S) systems requires an effective mechanism to assess risk. Existing methods focus primarily on measuring the safety aspect; the risk of an accident is determined based on the product of severity of consequence and likelihood of the incident arising. The health component, i.e., chronic harm, is more difficult to assess. Partially, this is due to both consequences and the likelihood of health issues, which may be indeterminate. There is a need to develop a quantitative risk measurement for H&S risk management and with better representation for chronic health issues. The present paper has approached this from a different direction, by adopting a public health perspective of quality of life. We have then changed the risk assessment process to accommodate this. This was then applied to a case study. The case study showed that merely including the chronic harm scales appeared to be sufficient to elicit a more detailed consideration of hazards for chronic harm. This suggests that people are not insensitive to chronic harm hazards, but benefit from having a framework in which to communicate them. A method has been devised to harmonize safety and harm risk assessments. The result was a comprehensive risk assessment method with consideration of safety accidents and chronic health issues. This has the potential to benefit industry by making chronic harm more visible and hence more preventable.


Sign in / Sign up

Export Citation Format

Share Document