scholarly journals Dynamic risk evaluation method for collapse disasters of drill-and-blast tunnels: a case study

2021 ◽  
Vol 19 (1) ◽  
pp. 309-330
Author(s):  
Bo Wu ◽  
◽  
Weixing Qiu ◽  
Wei Huang ◽  
Guowang Meng ◽  
...  

<abstract> <p>The tunnel collapse is one of the most frequent and harmful geological hazards during the construction of highway rock tunnels. As for reducing the occurrence probability of tunnel collapse, a new dynamic risk assessment methodology for the tunnel collapse was established, which combines the Cloud model (CM), the Membership function, and the Bayesian network (BN). During the preparation phase, tunnel collapse risk factors are identified and an index system is constructed. Then, the proposed novel assessment method is used to evaluate the probability of tunnel collapse risk for on-site construction. The probability of tunnel collapse risk in the dynamic process of construction can provide real-time guidance for tunnel construction. Moreover, a typical case study of the Yutangxi tunnel is performed, which belongs to the Pu-Yan Highway Project (Fujian, China). The results show that the dynamic evaluation model is well validated and applied. The risk value of tunnel collapse in a construction cycle is predicted successfully, and on-site construction is guided to reduce the occurrence of tunnel collapse. Besides, it also proves the feasibility of the dynamic evaluation method and its application potential.</p> </abstract>

Author(s):  
Raza Ali Mehdi ◽  
Michael Baldauf ◽  
Hasan Deeb

This work focuses on the development of a deterministic dynamic risk method that can be used by operational end-users such as seafarers, when navigating in restricted waters where there is spatial conflict due to multi-use of marine areas by the shipping and offshore renewable energy industries. The developed method can also be used during the planning stages of offshore renewable energy installations. A case study of vessel operations near an offshore wind farm is also presented. The article also briefly discusses the potential application of manoeuvring-based dynamic risk methods to resolve spatial conflicts in the maritime, as well as other transport domains.


2021 ◽  
pp. 1-14
Author(s):  
Fuwei Liu ◽  
Yansen Wang

The freezing pipe fracture can cause freezing wall to thaw and even lead to major accidents such as mine flooding easily, which seriously threatens the safety in construction. Therefore, scientific and effective comprehensive risk assessment for freezing pipe fracture is of great significance. In this work, a risk assessment method is put forward based on improved AHP-Cloud model with 19 evaluation indicators. First, the multi-dimension evaluation index system and evaluation model are established, on the basis of in-depth analysis of the risk factors that may lead to accidents. Second, synthesizing the normalization process and the improved analytic hierarchy process (AHP), the evaluation grade cloud and comprehensive evaluation cloud of freezing pipe fracture can be acquired by using the forward cloud generator. Finally, According to the max-subjection principle and the comprehensive evaluation method, we obtain the risk level of freezing pipe fracture. The model is applied to Yangcun Coal Mine. It has been verified that the risk assessment problem of freezing pipe fracture in freezing sinking can be successfully solved by the model we proposed. Above all, the study offers a new research idea for the risk management of freezing pipe fracture in freeze sinking.


Land Science ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. p21
Author(s):  
Vera Iváncsics ◽  
Krisztina Filepné Kovács

Recently the planning of green infrastructure (GI) has become a general practice around metropolis (Paris, München, Budapest, etc). A complex methodology is required that goes beyond the scope of traditional green surface systems. However, there are various policy implications in the EU, the smaller towns are lagging to apply them. The paper presents a potential evaluation method through the case study of Keszthely, HU. As Keszthely at Balaton Riviera, is a popular touristic target of CEE, the environmental planning is an essential part of sustainable development. After a literature analyses of assessment methods of GI and ecosystem services, the aspects of GI have been valued on grade scales, based on field surveys and indicators. The current status of the GI was surveyed which is a base for further development and monitoring activities. The paper introduces the methodology, which contributes to preservation of ecosystems.


2021 ◽  
Author(s):  
Lei Guo ◽  
Xiufen ZHANG

Abstract Partial destructive disassembly (PDD) is essential for end-of-life products to improve their automatic disassembly efficiency and reduce disassembly cost. A feasibility evaluation of the PDD is the key step to evaluate whether the PDD can be implemented. However, it has not been studied previously to our knowledge. To deal with this problem, a multi-granularity feasibility evaluation method is proposed. A multi-granularity feasibility evaluation model of the PDD was constructed based on the complex product’s hierarchical structure, which not only described the evaluation indices from the product level to the component level but also presented methods and rules to quantify them. 1Thus, disassembly entropy was introduced into the target group’s coarse granularity evaluation. The feasibility of the fine-grained index of the PDD for the component layer was constructed based on the product’s failure characteristic. The fine-grained index was calculated by the fuzzy trigonometric function and its weighting was obtained based on the structure entropy weight method. Thus, the results of the evaluation were used as feedback to guide the PDD process. Finally, a Passat engine case study illustrates the feasibility and effectiveness of the method.


2019 ◽  
Vol 11 (23) ◽  
pp. 6778 ◽  
Author(s):  
Tao Li ◽  
Yimiao Song ◽  
Jing Shen

China’s achievements in climate change and clean energy have been recognized by the international community. Although China has achieved successes in the field of clean energy, especially clean power dispatch, power dispatch is still one-sided and incomplete when considering environmental aspects. This paper presents a comprehensive production cleanliness evaluation model to assign a comprehensive environmental value as a reference for clean power dispatch. The model considers all the pollutants currently regulated in China’s coal-fired power plants, carbon emissions, and sustainability as three basic environmental constraints. Then, emergy analysis is used to unify the input/output materials with different units of measurement, and the emergy-based environmental value added (EEVA) value is constructed. As an integrated environmental value, the EEVA can provide an environmental reference for clean power dispatch. Finally, we selected a representative coal-fired power plant in China as a case study. By applying the above model, the dispatching sequence for four generating units was arranged from the perspective of cleanliness.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yan Wang ◽  
Jie Su ◽  
Sulei Zhang ◽  
Siyao Guo ◽  
Peng Zhang ◽  
...  

In view of the shortcomings in the risk assessment of deep-buried tunnels, a dynamic risk assessment method based on a Bayesian network is proposed. According to case statistics, a total of 12 specific risk rating factors are obtained and divided into three types: objective factors, subjective factors, and monitoring factors. The grading criteria of the risk rating factors are determined, and a dynamic risk rating system is established. A Bayesian network based on this system is constructed by expert knowledge and historical data. The nodes in the Bayesian network are in one-to-one correspondence with the three types of influencing factors, and the probability distribution is determined. Posterior probabilistic and sensitivity analyses are carried out, and the results show that the main influencing factors obtained by the two methods are basically the same. The constructed dynamic risk assessment model is most affected by the objective factor rating and monitoring factor rating, followed by the subjective factor rating. The dynamic risk rating is mainly affected by the surrounding rock level among the objective factors, construction management among the subjective factors, and arch crown convergence and side wall displacement among the monitoring factors. The dynamic risk assessment method based on the Bayesian network is applied to the No. 3 inclined shaft of the Humaling tunnel. According to the adjustment of the monitoring data and geological conditions, the dynamic risk rating probability of level I greatly decreased from 81.7% to 33.8%, the probability of level II significantly increased from 12.3% to 34.0%, and the probability of level III increased from 5.95% to 32.2%, which indicates that the risk level has risen sharply. The results show that this method can effectively predict the risk level during tunnel construction.


2011 ◽  
Vol 467-469 ◽  
pp. 1193-1199 ◽  
Author(s):  
Yu Lian Fei ◽  
Xin Hou ◽  
Er Tian Hua

Traditional methods such as scoring method, Likert scale method, etc, suffer from uncertainness, randomness and inaccuracy. To solve these problems, a cloud model is presented in this paper. Based on fuzzy mathematics and statistics, the cloud model can convert the qualitative evaluation of the product to quantitative scores. It’s a better way to overcome the disadvantages of direct scoring method that cause more inaccuracies. A prouct satisfaction evaluation model with three dimensions (i.e., evaluation index, product sets and estimator) is then constructed, which combines the cloud model and the grey relational analysis. Finally, the effectivity of the presented model is demonstrated by a case study.


2021 ◽  
Vol 11 (24) ◽  
pp. 11721
Author(s):  
Jianxiu Wang ◽  
Ansheng Cao ◽  
Zhao Wu ◽  
Zhipeng Sun ◽  
Xiao Lin ◽  
...  

Ultra-shallow-buried and large-span double-arch tunnels face complex risks during construction. The risk sources are hidden, complicated, and diverse. The dynamic risk assessment problem cannot be solved satisfactorily by using the static method as an insufficient amount of research has been conducted. The land part of the Xiamen Haicang double-arch tunnel was selected as the background for the dynamic risk assessment of ultra-shallow-buried and large-span double-arch tunnel construction. The construction process was divided into five stages: pre-construction preparation; ground and surrounding rock reinforcement; pilot tunnel excavation; and the single-and the double-tunnel excavations of the main tunnel. Through consultation with tunnel experts, six first-level and thirty second-level risk evaluation indexes were proposed. The benchmark weight of the dynamic risk assessment index was determined by using the analytic hierarchy process. The weight of the risk evaluation index was revised according to the monitoring data and the construction stage. The fuzzy evaluation matrix of the construction risk membership degree was obtained by using the fuzzy comprehensive assessment method, and the calculation results were analyzed using the subsection assignment method. Control measures were suggested according to the risk assessment results. The risk assessment result of the double tunnel excavation stage of the main tunnel was level II, and the risk level was the highest among the five construction stages. The risk assessment result of the ground and surrounding rock reinforcement stage was level IV, and the risk level was the lowest. The dynamic construction safety risk assessment based on the fuzzy comprehensive assessment method is more timely, accurate, and reasonable than the traditional assessment method. The method can be adopted in similar engineering projects.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuguo Gao ◽  
Jun Zhao ◽  
Yunpeng Liu ◽  
Ziqiang Xu ◽  
Zhe Li ◽  
...  

The uncertainty of the evaluation information is likely to affect the accuracy of the evaluation, when conducting a health evaluation of a power transformer. A multilevel health assessment method for power transformers is proposed in view of the three aspects of indicator criterion uncertainty, weight uncertainty, and fusion uncertainty. Firstly, indicator selection is conducted through the transformer guidelines and engineering experience to establish a multilevel model of transformers that can reflect the defect type and defect location. Then, a Gaussian cloud model is used to solve the uncertainty of the indicator criterion boundary. Based on association rules, AHP, and variable weights, the processed weights are calculated from the update module to obtain comprehensive weights, which overcomes the uncertainty of the weights. Improved DSmT theory is used for multiple evidence fusion to solve the high conflict and uncertainty problems in the fusion process. Finally, through actual case analysis, the defect type, defect location, and overall state of the transformer of the device are obtained. By comparing with many defect cases in a case-study library, the evaluation accuracy rate is found to reach 96.21%, which verifies the practicability and efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document