scholarly journals An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Arun Bahadur Gurung ◽  
Mohammad Ajmal Ali ◽  
Joongku Lee ◽  
Mohammad Abul Farah ◽  
Khalid Mashay Al-Anazi

The recent outbreak of the deadly coronavirus disease 19 (COVID-19) pandemic poses serious health concerns around the world. The lack of approved drugs or vaccines continues to be a challenge and further necessitates the discovery of new therapeutic molecules. Computer-aided drug design has helped to expedite the drug discovery and development process by minimizing the cost and time. In this review article, we highlight two important categories of computer-aided drug design (CADD), viz., the ligand-based as well as structured-based drug discovery. Various molecular modeling techniques involved in structure-based drug design are molecular docking and molecular dynamic simulation, whereas ligand-based drug design includes pharmacophore modeling, quantitative structure-activity relationship (QSARs), and artificial intelligence (AI). We have briefly discussed the significance of computer-aided drug design in the context of COVID-19 and how the researchers continue to rely on these computational techniques in the rapid identification of promising drug candidate molecules against various drug targets implicated in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The structural elucidation of pharmacological drug targets and the discovery of preclinical drug candidate molecules have accelerated both structure-based as well as ligand-based drug design. This review article will help the clinicians and researchers to exploit the immense potential of computer-aided drug design in designing and identification of drug molecules and thereby helping in the management of fatal disease.

2018 ◽  
Vol 8 (5) ◽  
pp. 504-509 ◽  
Author(s):  
Surabhi Surabhi ◽  
BK Singh

Discovery and development of a new drug is generally known as a very complex process which takes a lot of time and resources. So now a day’s computer aided drug design approaches are used very widely to increase the efficiency of the drug discovery and development course. Various approaches of CADD are evaluated as promising techniques according to their need, in between all these structure-based drug design and ligand-based drug design approaches are known as very efficient and powerful techniques in drug discovery and development. These both methods can be applied with molecular docking to virtual screening for lead identification and optimization. In the recent times computational tools are widely used in pharmaceutical industries and research areas to improve effectiveness and efficacy of drug discovery and development pipeline. In this article we give an overview of computational approaches, which is inventive process of finding novel leads and aid in the process of drug discovery and development research. Keywords: computer aided drug discovery, structure-based drug design, ligand-based drug design, virtual screening and molecular docking


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 627 ◽  
Author(s):  
Qurat ul Ain ◽  
Maria Batool ◽  
Sangdun Choi

The integration of computational techniques into drug development has led to a substantial increase in the knowledge of structural, chemical, and biological data. These techniques are useful for handling the big data generated by empirical and clinical studies. Over the last few years, computer-aided drug discovery methods such as virtual screening, pharmacophore modeling, quantitative structure-activity relationship analysis, and molecular docking have been employed by pharmaceutical companies and academic researchers for the development of pharmacologically active drugs. Toll-like receptors (TLRs) play a vital role in various inflammatory, autoimmune, and neurodegenerative disorders such as sepsis, rheumatoid arthritis, inflammatory bowel disease, Alzheimer’s disease, multiple sclerosis, cancer, and systemic lupus erythematosus. TLRs, particularly TLR4, have been identified as potential drug targets for the treatment of these diseases, and several relevant compounds are under preclinical and clinical evaluation. This review covers the reported computational studies and techniques that have provided insights into TLR4-targeting therapeutics. Furthermore, this article provides an overview of the computational methods that can benefit a broad audience in this field and help with the development of novel drugs for TLR-related disorders.


2017 ◽  
Vol II (I) ◽  
pp. 1-8
Author(s):  
Arif Paiman ◽  
Ahmad Mohammad ◽  
Mubashar Rehman

In modern day, Data on different diseases and drug substances with their properties like modification, side effects, and dose requires documentation data and building library exploring, such library with vast information in every aspect needs computational methods used in CADD. Recognition of specific targets for the drug tested and defining pharmacological activity of a drug candidate based on the structure of both drug and its target, finding outside effects of drugs at the molecular level and calculation of toxicity caused by metabolism of drug applications of Computer aided drug design in the drug discovery process. We can get additional tools and websites which serve As a tool for the source of data and computational drug design are available on the web interface and being used extensively by researchers and scientists to save time and budget for speeding up the process of experiments for Novel Drug compound.


Author(s):  
Victor T. Sabe ◽  
Thandokuhle Ntombela ◽  
Lindiwe A. Jhamba ◽  
Glenn E.M. Maguire ◽  
Thavendran Govender ◽  
...  

1970 ◽  
Vol 2 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Dipali Singh ◽  
Anushree Tripathi ◽  
Gautam Kumar

Drug design is a costly and difficult process. Drug must fulfill several criteria of being active, nontoxic and bioavailable. The conventional way of synthesizing drugs is a monotonous process. But computer aided drug design is a proficient way to overcome the tedious process of conventional method. Drugs can be designed computationally by structure or target based drug designing (SBDD). This review summarizes the methods of structure based drug design, usage of related softwares and a case study that explores to find a suitable drug (lead) molecule for the mutated state of H-Ras protein in order to prevent complex formation with Raf protein.Keywords: computer aided drug design; structure based drug design; Ras-proteinDOI: http://dx.doi.org/10.3126/njb.v2i1.5680Nepal Journal of Biotechnology Jan.2012, Vol.2(1): 53-61


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Li Wang ◽  
Michael A. Crackower ◽  
Hao Wu

Inflammasome proteins play an important role in many diseases of high unmet need, making them attractive drug targets. However, drug discovery for inflammasome proteins has been challenging in part due to the difficulty in solving high-resolution structures using cryo-EM or crystallography. Recent advances in the structural biology of NLRP3 and NLRP1 have provided the first set of data that proves a promise for structure-based drug design for this important family of targets.


Author(s):  
Dr. Kalpana Virendra Singh ◽  
Dr. Shobha Shouche ◽  
Dr. Ramchander Merugu ◽  
Dr. Jeeven Singh Solanki

Drug discovery and design is a tedious and lengthy process which takes enormous time, andwhen this process reaches it’s final stage that is the final stage of clinical trials 90% of thepromising drug candidates fail levying a huge financial burden of around $2-3bn on thedeveloper company. The drug failure not only incurs a financial loss to the company, but alsosmashes the hopes of the patients and families waiting for the successful approval of the drug.The scenario is even complicated when it comes to the drug approval for diseases likeAlzheimer’s. Computer aided drug design may help in the drug discovery process by slashingthe time required for searching the potential drug target through computer aided software andprograms. However the key to the success of the drug still lies in the understanding of themechanism of the cause of disease and prognosis. Computer aided drug design help in theselection and modification of leads out of number of hits available. The present study dealswith a case study of Intepridine an ambitious Axovant drug molecule which failed in the finalphase of clinical trials and was withdrawn from the market by Axovant the developer pharmacompany.


2020 ◽  
Vol 21 (3) ◽  
pp. 703 ◽  
Author(s):  
Varnavas D. Mouchlis ◽  
Georgia Melagraki ◽  
Lefteris C. Zacharia ◽  
Antreas Afantitis

Aging-associated neurodegenerative diseases, which are characterized by progressive neuronal death and synapses loss in human brain, are rapidly growing affecting millions of people globally. Alzheimer’s is the most common neurodegenerative disease and it can be caused by genetic and environmental risk factors. This review describes the amyloid-β and Tau hypotheses leading to amyloid plaques and neurofibrillary tangles, respectively which are the predominant pathways for the development of anti-Alzheimer’s small molecule inhibitors. The function and structure of the druggable targets of these two pathways including β-secretase, γ-secretase, and Tau are discussed in this review article. Computer-Aided Drug Design including computational structure-based design and ligand-based design have been employed successfully to develop inhibitors for biomolecular targets involved in Alzheimer’s. The application of computational molecular modeling for the discovery of small molecule inhibitors and modulators for β-secretase and γ-secretase is summarized. Examples of computational approaches employed for the development of anti-amyloid aggregation and anti-Tau phosphorylation, proteolysis and aggregation inhibitors are also reported.


2019 ◽  
Vol 22 (7) ◽  
pp. 432-444
Author(s):  
Ransford O. Kumi ◽  
Abdul R. Issahaku ◽  
Opeyemi S. Soremekun ◽  
Clement Agoni ◽  
Fisayo A. Olotu ◽  
...  

The pathophysiological roles of caspases have made them attractive targets in the treatment and amelioration of neurologic diseases. In normal conditions, the expression of caspases is regulated in the brain, while at the onset of neurodegeneration, such as in Alzheimer’s disease, they are typically overexpressed. Till date, several therapeutic efforts that include the use of small endogenous binders have been put forward to curtail dysfunctionalities that drive aberrant death in neuronal cells. Caspases are highly homologous, both in structure and in sequence, which leaves us with the question: is it possible to specifically and individually target caspases, while multiple therapeutic attempts to achieve selective targeting have failed! Based on antecedent events, the use of Computer-Aided Drug Design (CADD) methods has significantly contributed to the design of small molecule inhibitors, especially with selective target ability and reduced off-target therapeutic effects. Interestingly, we found out that there still exists an enormous room for the integration of structure/ligand-based drug design techniques towards the development of highly specific reversible and irreversible caspase inhibitors. Therefore, in this review, we highlight drug discovery approaches that have been directed towards caspase inhibition in addition to an insightful focus on applicable CADD techniques for achieving selective targeting in caspase research.


Sign in / Sign up

Export Citation Format

Share Document