scholarly journals Pyrogallol-Phloroglucinol-6 6-Bieckol on Attenuates High-Fat Diet-Induced Hypertension by Modulating Endothelial-to-Mesenchymal Transition in the Aorta of Mice

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Myeongjoo Son ◽  
Seyeon Oh ◽  
Ji Tae Jang ◽  
Kuk Hui Son ◽  
Kyunghee Byun

Endothelial-to-mesenchymal transition (EndMT), which is involved in the development of various cardiovascular diseases, is induced by dyslipidemia or obesity. In dyslipidemia, the increased levels of oxidized low-density lipoproteins (oxLDL) upregulated the lectin-type oxidized LDL receptor 1 (Lox-1), which then upregulated the down signaling pathways of PKC-α/MMPs/TGF-β/SMAD2 or 3 and increased the EndMT. In this study, we investigated the effect of pyrogallol-phloroglucinol-6,6-bieckol (PPB), which is a compound of Ecklonia cava (E. cava), on decreased blood pressure (BP) by attenuating the EndMT in a high-fat diet- (HFD-) fed animal model. We also investigated PPB’s attenuation effect on EndMT in oxLDL-treated mouse endothelial cells as an in vitro model. The results indicated that, in the aorta or endothelial cells of mice, the HFD or oxLDL treatment significantly increased the expression of Lox-1/PKC-α/MMP9/TGF-β/SMAD2/SMAD3. The PPB treatment significantly decreased its expression. In contrast, the HFD or oxLDL treatment significantly decreased the expression of the EC markers (PECAM-1 and vWF) while the PPB treatment significantly increased them. Moreover, the HFD or oxLDL treatment significantly increased the expression of the mesenchymal cell markers (α-SMA and vimentin) while PPB treatment significantly decreased them. PPB decreased the intima-media thickness and extracellular matrix amount of the aorta and attenuated the BP, which was increased by the HFD. In conclusion, PPB attenuated the upregulation of Lox-1/PKC-α/MMP9/TGF-β/SMAD2 and 3 and restored the EndMT in HFD-fed animals. Moreover, PPB showed a restoring effect on HFD-induced hypertension.

2005 ◽  
Vol 18 (4) ◽  
pp. 549-556 ◽  
Author(s):  
C NICOL ◽  
M ADACHI ◽  
T AKIYAMA ◽  
F GONZALEZ

2019 ◽  
Vol 99 (2) ◽  
pp. 1281-1324 ◽  
Author(s):  
Sonsoles Piera-Velazquez ◽  
Sergio A. Jimenez

Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.


2017 ◽  
Vol 312 (4) ◽  
pp. H711-H720 ◽  
Author(s):  
Thorsten M. Leucker ◽  
Yohei Nomura ◽  
Jae Hyung Kim ◽  
Anil Bhatta ◽  
Victor Wang ◽  
...  

Endothelial cystathionine γ-lyase (CSEγ) contributes to cardiovascular homeostasis, mainly through production of H2S. However, the molecular mechanisms that control CSEγ gene expression in the endothelium during cardiovascular diseases are unclear. The aim of the current study is to determine the role of specific histone deacetylases (HDACs) in the regulation of endothelial CSEγ. Reduced CSEγ mRNA expression and protein abundance were observed in human aortic endothelial cells (HAEC) exposed to oxidized LDL (OxLDL) and in aortas from atherogenic apolipoprotein E knockout (ApoE−/−) mice fed a high-fat diet compared with controls. Intact murine aortic rings exposed to OxLDL (50 μg/ml) for 24 h exhibited impaired endothelium-dependent vasorelaxation that was blocked by CSEγ overexpression or the H2S donor NaHS. CSEγ expression was upregulated by pan-HDAC inhibitors and by class II-specific HDAC inhibitors, but not by other class-specific inhibitors. The HDAC6 selective inhibitor tubacin and HDAC6-specific siRNA increased CSEγ expression and blocked OxLDL-mediated reductions in endothelial CSEγ expression and CSEγ promoter activity, indicating that HDAC6 is a specific regulator of CSEγ expression. Consistent with this finding, HDAC6 mRNA, protein expression, and activity were upregulated in OxLDL-exposed HAEC, but not in human aortic smooth muscle cells. HDAC6 protein levels in aortas from high-fat diet-fed ApoE−/− mice were comparable to those in controls, whereas HDAC6 activity was robustly upregulated. Together, our findings indicate that HDAC6 is upregulated by atherogenic stimuli via posttranslational modifications and is a critical regulator of CSEγ expression in vascular endothelium. Inhibition of HDAC6 activity may improve endothelial function and prevent or reverse the development of atherosclerosis. NEW & NOTEWORTHY Oxidative injury to endothelial cells by oxidized LDL reduced cystathionine γ-lyase (CSEγ) expression and H2S production, leading to endothelial dysfunction, which was prevented by histone deacetylase 6 (HDAC6) inhibition. Our data suggest HDAC6 as a novel therapeutic target to prevent the development of atherosclerosis.


Author(s):  
João P. Monteiro ◽  
Julie Rodor ◽  
Axelle Caudrillier ◽  
Jessica P Scanlon ◽  
Ana-Mishel Spiroski ◽  
...  

Rationale: Endothelial-to-mesenchymal transition (EndMT) is a dynamic biological process involved in pathological vascular remodelling. However, the molecular mechanisms that govern this transition remain largely unknown, including the contribution of long non-coding RNAs (lncRNAs). Objective: To investigate the role of lncRNAs in EndMT and their relevance to vascular remodelling. Methods and Results: To study EndMT in vitro, primary endothelial cells (EC) were treated with transforming growth factor-β2 and interleukin-1β. Single-cell and bulk RNA-sequencing were performed to investigate the transcriptional architecture of EndMT and identify regulated lncRNAs. The functional contribution of seven lncRNAs during EndMT was investigated based on a DsiRNA screening assay. The loss of lncRNA MIR503HG was identified as a common signature across multiple human EC types undergoing EndMT in vitro. MIR503HG depletion induced a spontaneous EndMT phenotype, while its overexpression repressed hallmark EndMT changes, regulating 29% of its transcriptome signature. Importantly, the phenotypic changes induced by MIR503HG were independent of miR-424 and miR-503, which overlap the lncRNA locus. The pathological relevance of MIR503HG down-regulation was confirmed in vivo using Sugen/Hypoxia (SuHx)-induced pulmonary hypertension (PH) in mouse, as well as in human clinical samples, in lung sections and blood outgrowth endothelial cells (BOECs) from pulmonary arterial hypertension (PAH) patients. Overexpression of human MIR503HG in SuHx mice led to reduced mesenchymal marker expression, suggesting MIR503HG therapeutic potential. We also revealed that MIR503HG interacts with the Polypyrimidine Tract Binding Protein 1 (PTB1) and regulates its protein level. PTBP1 regulation of EndMT markers suggests that the role of MIR503HG in EndMT might be mediated in part by PTBP1. Conclusions: This study reports a novel lncRNA transcriptional profile associated with EndMT and reveals the crucial role of the loss of MIR503HG in EndMT and its relevance to pulmonary hypertension.


Author(s):  
Lauren A. Biwer ◽  
Brigett V. Carvajal ◽  
Qing Lu ◽  
Joshua J. Man ◽  
Iris Z. Jaffe

Obesity impairs endothelial-mediated vasodilation, the earliest step in vascular disease and a contributor to hypertension. We previously demonstrated that endothelial cell MR (mineralocorticoid receptor) deletion prevents obesity-induced microvascular dysfunction in females by increasing nitric oxide (NO)-mediated vasodilation. ERα (Estrogen receptor α) can oppose MR function, therefore, we hypothesized that ERα mediates the benefits of endothelial MR deficiency. Females lacking endothelial MR or wild-type littermates were fed control or high-fat diet for 20 weeks to cause obesity. MR deletion improved mesenteric artery endothelial-dependent vasodilation in obese females, and ex vivo ERα inhibition negated this protective effect. Endothelial MR deletion resulted in significantly more ERα mRNA and protein. In vitro, estrogen increased endothelial NO synthase phosphorylation, and this was inhibited by aldosterone and dependent on MR. Both proteins coimmunoprecipitated with striatin and a mimetic peptide that disrupts ERα-striatin binding also decreased MR-striatin interaction. Finally, removing endothelial MR in obese females restored endothelial function by increasing the NO component of vasodilation. Combined deletion of endothelial ERα negated the benefit of endothelial MR deletion. These results indicate that endothelial ERα prevents the detrimental effects of MR in obesity by increasing NO to rescue vasodilation in females. MR and ERα may compete for striatin binding within endothelial cells to regulate NO. These data identify a novel mechanism that promotes MR antagonism to prevent obesity-induced microvascular dysfunction in females.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Wangyue Jia ◽  
Zhaoyan Wang ◽  
Ceshu Gao ◽  
Jian Wu ◽  
Qiong Wu

AbstractThe endothelial-to-mesenchymal transition (EndMT) is an important source of fibrotic cells in idiopathic pulmonary fibrosis (IPF). However, how endothelial cells (ECs) are activated and how EndMT impact IPF remain largely elusive. Here, we use unsupervised pseudotemporal analysis to recognize the heterogeneity of ECs and reconstruct EndMT trajectory of bleomycin (BLM)-treated Tie2creER/+;Rosa26tdTomato/+ IPF mice. Genes like C3ar1 and Lgals3 (protein name galectin-3) are highly correlated with the transitional pseudotime, whose expression is gradually upregulated during the fate switch of ECs from quiescence to activation in fibrosis. Inhibition of galectin-3 via siRNA or protein antagonists in mice could alleviate the pathogenesis of IPF and the transition of ECs. With the stimulation of human pulmonary microvascular endothelial cells (HPMECs) by recombinant proteins and/or siRNAs for galectin-3 in vitro, β-catenin/GSK3β signaling and its upstream regulator AKT are perturbed, which indicates they mediate the EndMT progress. These results suggest that EndMT is essential to IPF process and provide potential therapeutic targets for vascular remodeling.


Author(s):  
Krisztina Németh ◽  
Zoltán Varga ◽  
Dorina Lenzinger ◽  
Tamás Visnovitz ◽  
Anna Koncz ◽  
...  

AbstractLiver plays a central role in elimination of circulating extracellular vesicles (EVs), and it also significantly contributes to EV release. However, the involvement of the different liver cell populations remains unknown. Here, we investigated EV uptake and release both in normolipemia and hyperlipidemia. C57BL/6 mice were kept on high fat diet for 20–30 weeks before circulating EV profiles were determined. In addition, control mice were intravenously injected with 99mTc-HYNIC-Duramycin labeled EVs, and an hour later, biodistribution was analyzed by SPECT/CT. In vitro, isolated liver cell types were tested for EV release and uptake with/without prior fatty acid treatment. We detected an elevated circulating EV number after the high fat diet. To clarify the differential involvement of liver cell types, we carried out in vitro experiments. We found an increased release of EVs by primary hepatocytes at concentrations of fatty acids comparable to what is characteristic for hyperlipidemia. When investigating EV biodistribution with 99mTc-labeled EVs, we detected EV accumulation primarily in the liver upon intravenous injection of mice with medium (326.3 ± 19.8 nm) and small EVs (130.5 ± 5.8 nm). In vitro, we found that medium and small EVs were preferentially taken up by Kupffer cells, and liver sinusoidal endothelial cells, respectively. Finally, we demonstrated that in hyperlipidemia, there was a decreased EV uptake both by Kupffer cells and liver sinusoidal endothelial cells. Our data suggest that hyperlipidema increases the release and reduces the uptake of EVs by liver cells. We also provide evidence for a size-dependent differential EV uptake by the different cell types of the liver. The EV radiolabeling protocol using 99mTc-Duramycin may provide a fast and simple labeling approach for SPECT/CT imaging of EVs biodistribution.


Sign in / Sign up

Export Citation Format

Share Document