scholarly journals Well Control Optimization of Waterflooding Oilfield Based on Deep Neural Network

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lihui Tang ◽  
Junjian Li ◽  
Wenming Lu ◽  
Peiqing Lian ◽  
Hao Wang ◽  
...  

A well control optimization method is a key technology to adjust the flow direction of waterflooding and improve the effect of oilfield development. The existing well control optimization method is mainly based on optimization algorithms and numerical simulators. In the face of larger models, longer optimization periods, or reservoir models with a large number of optimized wells, there are many optimization variables, which will cause algorithm convergence difficulties and optimization costs. The application effect is not good because of the problems of time length, few comparison schemes, and only fixed control frequency. This paper proposes a new method of a well control optimization method based on a multi-input deep neural network. This method takes the production history data of the reservoir as the main input and the saturation field as the auxiliary input and establishes a multi-input deep neural network for learning, forming a production dynamic prediction model instead of conventional numerical simulators. Based on the production dynamic prediction model, a series of model generation, production prediction, comparison, and optimization are carried out to find the best production plan of the reservoir. The calculation results of the examples show that (1) compared with the single-input production dynamic prediction model, the production dynamic prediction model based on multiple inputs has better prediction accuracy, and the results are close to the calculation results of the conventional numerical simulator; (2) the well control optimization method based on the multiple-input deep neural network has a fast optimization speed, with many comparison schemes and good optimization effect.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhixiang Wang ◽  
Jiange Li ◽  
Zhengqi Zhang ◽  
Youxiang Zuo

This study proposes a prediction model for accurately detecting styrene-butadiene-styrene (SBS) content in modified asphalt using the deep neural network (DNN). Traditional methods used for evaluating the SBS content are inaccurate and complicated because they are prone to produce errors by manual computation. Feature data of SBS content are derived from the spectra, which are obtained by the Fourier-transform infrared spectroscopy test. After designing DNN, preprocessed feature data are utilized as training and testing data and are fed into the DNN via a feature matrix. Furthermore, comparative studies are conducted to verify the accuracy of the proposed model. Results show that the mean square error value decreased by 68% for DNN with noise and dimension reduction. The DNN-based prediction model showed that the correlation coefficient between the target value and the mean predicted value is 0.9978 and 0.9992 for training and testing samples, respectively, indicating its remarkable accuracy and applicability after training. In comparison with the standard curve method and the random forest method, the precision of DNN is greater than 98% for the same test conditions, achieving the best predicting performance.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1620 ◽  
Author(s):  
Ganjar Alfian ◽  
Muhammad Syafrudin ◽  
Norma Latif Fitriyani ◽  
Muhammad Anshari ◽  
Pavel Stasa ◽  
...  

Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension–diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.


2014 ◽  
Vol 986-987 ◽  
pp. 524-528 ◽  
Author(s):  
Ting Jing Ke ◽  
Min You Chen ◽  
Huan Luo

This paper proposes a short-term wind power dynamic prediction model based on GA-BP neural network. Different from conventional prediction models, the proposed approach incorporates a prediction error adjusting strategy into neural network based prediction model to realize the function of model parameters self-adjusting, thus increase the prediction accuracy. Genetic algorithm is used to optimize the parameters of BP neural network. The wind power prediction results from different models with and without error adjusting strategy are compared. The comparative results show that the proposed dynamic prediction approach can provide more accurate wind power forecasting.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7109
Author(s):  
Chengying Zhao ◽  
Xianzhen Huang ◽  
Yuxiong Li ◽  
Muhammad Yousaf Iqbal

In recent years, prognostic and health management (PHM) has played an important role in industrial engineering. Efficient remaining useful life (RUL) prediction can ensure the development of maintenance strategies and reduce industrial losses. Recently, data-driven based deep learning RUL prediction methods have attracted more attention. The convolution neural network (CNN) is a kind of deep neural network widely used in RUL prediction. It shows great potential for application in RUL prediction. A CNN is used to extract the features of time-series data according to the spatial feature method. This way of processing features without considering the time dimension will affect the prediction accuracy of the model. On the contrary, the commonly used long short-term memory (LSTM) network considers the timing of the data. However, compared with CNN, it lacks spatial data extraction capabilities. This paper proposes a double-channel hybrid prediction model based on the CNN and a bidirectional LSTM network to avoid those drawbacks. The sliding time window is used for data preprocessing, and an improved piece-wise linear function is used for model validating. The prediction model is evaluated using the C-MAPSS dataset provided by NASA. The predicted results show the proposed prediction model to have a better prediction performance compared with other state-of-the-art models.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 928
Author(s):  
Hsiu-An Lee ◽  
Louis R. Chao ◽  
Chien-Yeh Hsu

Cancer is the leading cause of death in Taiwan. According to the Cancer Registration Report of Taiwan’s Ministry of Health and Welfare, a total of 13,488 people suffered from lung cancer in 2016, making it the second-most common cancer and the leading cancer in men. Compared with other types of cancer, the incidence of lung cancer is high. In this study, the National Health Insurance Research Database (NHIRDB) was used to determine the diseases and symptoms associated with lung cancer, and a 10-year probability deep neural network prediction model for lung cancer was developed. The proposed model could allow patients with a high risk of lung cancer to receive an earlier diagnosis and support the physicians’ clinical decision-making. The study was designed as a cohort study. The subjects were patients who were diagnosed with lung cancer between 2000 and 2009, and the patients’ disease histories were back-tracked for a period, extending to ten years before the diagnosis of lung cancer. As a result, a total of 13 diseases were selected as the predicting factors. A nine layers deep neural network model was created to predict the probability of lung cancer, depending on the different pre-diagnosed diseases, and to benefit the earlier detection of lung cancer in potential patients. The model is trained 1000 times, the batch size is set to 100, the SGD (Stochastic gradient descent) optimizer is used, the learning rate is set to 0.1, and the momentum is set to 0.1. The proposed model showed an accuracy of 85.4%, a sensitivity of 72.4% and a specificity of 85%, as well as an 87.4% area under ROC (AUROC) (95%, 0.8604–0.8885) model precision. Based on data analysis and deep learning, our prediction model discovered some features that had not been previously identified by clinical knowledge. This study tracks a decade of clinical diagnostic records to identify possible symptoms and comorbidities of lung cancer, allows early prediction of the disease, and assists more patients with early diagnosis.


Sign in / Sign up

Export Citation Format

Share Document