scholarly journals Exploring the Stochastic Host-Pathogen Tuberculosis Model with Adaptive Immune Response

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
S. P. Rajasekar ◽  
M. Pitchaimani ◽  
Quanxin Zhu ◽  
Kaibo Shi

In this literature, we probe a stochastic host-pathogen tuberculosis model with the adaptive immune response of four states of epidemiological classification: Mycobacterium tuberculosis, uninfected macrophages, infected macrophages, and immune response CD4+ T cells. This model is pertinent to the latent stage of tuberculosis infection and active tuberculosis-infected individuals. The stochastic host-pathogen tuberculosis model in pathology is constituted based on the environmental influence on the Mycobacterium tuberculosis and macrophage population, elucidated by stochastic perturbations, and it is proportional to each state. We evince the existence and a unique global positive solution of a stochastic tuberculosis model. We attain sufficient conditions for the extinction of the tubercle bacillus. Moreover, we acquire the existence of the stationary distribution of the positive solutions by the Lyapunov function method. Eventually, numerical simulations validate analytical findings and the dynamics of the stochastic TB model.

2007 ◽  
Vol 205 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Andrea J. Wolf ◽  
Ludovic Desvignes ◽  
Beth Linas ◽  
Niaz Banaiee ◽  
Toshiki Tamura ◽  
...  

The onset of the adaptive immune response to Mycobacterium tuberculosis is delayed compared with that of other infections or immunization, and allows the bacterial population in the lungs to expand markedly during the preimmune phase of infection. We used adoptive transfer of M. tuberculosis Ag85B-specific CD4+ T cells to determine that the delayed adaptive response is caused by a delay in initial activation of CD4+ T cells, which occurs earliest in the local lung-draining mediastinal lymph node. We also found that initial activation of Ag85B-specific T cells depends on production of antigen by bacteria in the lymph node, despite the presence of 100-fold more bacteria in the lungs. Although dendritic cells have been found to transport M. tuberculosis from the lungs to the local lymph node, airway administration of LPS did not accelerate transport of bacteria to the lymph node and did not accelerate activation of Ag85B-specific T cells. These results indicate that delayed initial activation of CD4+ T cells in tuberculosis is caused by the presence of the bacteria in a compartment that cannot be mobilized from the lungs to the lymph node, where initial T cell activation occurs.


2004 ◽  
Vol 114 (12) ◽  
pp. 1790-1799 ◽  
Author(s):  
Cecile M. Fremond ◽  
Vladimir Yeremeev ◽  
Delphine M. Nicolle ◽  
Muazzam Jacobs ◽  
Valerie F. Quesniaux ◽  
...  

2016 ◽  
Vol 113 (41) ◽  
pp. E6172-E6181 ◽  
Author(s):  
Alissa C. Rothchild ◽  
James R. Sissons ◽  
Shahin Shafiani ◽  
Christopher Plaisier ◽  
Deborah Min ◽  
...  

The regulation of host–pathogen interactions during Mycobacterium tuberculosis (Mtb) infection remains unresolved. MicroRNAs (miRNAs) are important regulators of the immune system, and so we used a systems biology approach to construct an miRNA regulatory network activated in macrophages during Mtb infection. Our network comprises 77 putative miRNAs that are associated with temporal gene expression signatures in macrophages early after Mtb infection. In this study, we demonstrate a dual role for one of these regulators, miR-155. On the one hand, miR-155 maintains the survival of Mtb-infected macrophages, thereby providing a niche favoring bacterial replication; on the other hand, miR-155 promotes the survival and function of Mtb-specific T cells, enabling an effective adaptive immune response. MiR-155–induced cell survival is mediated through the SH2 domain-containing inositol 5-phosphatase 1 (SHIP1)/protein kinase B (Akt) pathway. Thus, dual regulation of the same cell survival pathway in innate and adaptive immune cells leads to vastly different outcomes with respect to bacterial containment.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2160
Author(s):  
Alessandro Sinigaglia ◽  
Elektra Peta ◽  
Silvia Riccetti ◽  
Seshasailam Venkateswaran ◽  
Riccardo Manganelli ◽  
...  

Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the most lethal infectious diseases with estimates of approximately 1.4 million human deaths in 2018. M. tuberculosis has a well-established ability to circumvent the host immune system to ensure its intracellular survival and persistence in the host. Mechanisms include subversion of expression of key microRNAs (miRNAs) involved in the regulation of host innate and adaptive immune response against M. tuberculosis. Several studies have reported differential expression of miRNAs during active TB and latent tuberculosis infection (LTBI), suggesting their potential use as biomarkers of disease progression and response to anti-TB therapy. This review focused on the miRNAs involved in TB pathogenesis and on the mechanism through which miRNAs induced during TB modulate cell antimicrobial responses. An attentive study of the recent literature identifies a group of miRNAs, which are differentially expressed in active TB vs. LTBI or vs. treated TB and can be proposed as candidate biomarkers.


Tuberculosis ◽  
2017 ◽  
Vol 102 ◽  
pp. 34-46 ◽  
Author(s):  
Vanessa Hui Qi Koh ◽  
See Liang Ng ◽  
Michelle Lay Teng Ang ◽  
Wenwei Lin ◽  
Christiane Ruedl ◽  
...  

2020 ◽  
Author(s):  
Yi Cai ◽  
Eleni Jaecklein ◽  
Jared Mackenzie ◽  
Kadamba Papavinasasundaram ◽  
Andrew J. Olive ◽  
...  

AbstractIn order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs.Author SummaryTuberculosis, caused by Mycobacterium tuberculosis (Mtb) is a serious global health problem that is responsible for over one million deaths annually, more than any other single infectious agent. In the host, Mtb can adapt to a wide variety of immunological and environmental pressures which is integral to its success as a pathogen. Accordingly, the respiratory capacity of Mtb is flexible. The electron transport chain of Mtb has two terminal oxidases, the cytochrome bc1/aa3 super complex and cytochrome bd, that contribute to the proton motive force and subsequent production of energy in the form of ATP. The bc1/aa3 super complex is required for optimal growth during infection but the role of cytochrome bd is unclear. Here we report that the cytochrome bd oxidase is required for resisting the adaptive immune response, in particular, acidification of the phagosome induced by lymphocyte-derived IFNγ. We found that the cytochrome bd oxidase is specifically required under acidic conditions, where the bc1/aa3 complex is preferentially inhibited. Additionally, we show that acidic conditions increased the potency of Q203, a cytochrome bc1/aa3 inhibitor and candidate tuberculosis therapy. This work defines a new link between the host immune response and the respiratory requirements of Mtb that affects the potency of a potential new therapeutic.


Sign in / Sign up

Export Citation Format

Share Document