scholarly journals Quantitation of Apremilast in Beagle Dogs Plasma by UPLC-MS-MS and Its Application to Pharmacokinetic Studies

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Wei Xiong ◽  
Ling Wang ◽  
Haiyan Zhang ◽  
Xiaoqiu Tao ◽  
Xuehua Jiang ◽  
...  

A sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method for the determination of apremilast in beagle dog plasma has been developed and successfully validated in the current study. Clopidogrel was employed as an internal standard (IS), and liquid-liquid extraction by tert-butylmethyl ether was used for sample preparation. Chromatographic separation was achieved on a UPLC BEH Shield RP18 column (50 mm × 2.1 mm, 1.7 μm) with 5 mM ammonium formate water and 5 mM ammonium formate methanol as the mobile phase with gradient elution. Calibration plots were linear in the range of 2–3000 ng/mL for apremilast in beagle dog plasma. Mean recoveries of apremilast in beagle dogs plasma ranged from 87.4% to 97.4%. The intrarun and interrun precision was less than 6% and 9%, respectively, with the accuracy between 92.4% and 101.1%. The method has also been successfully applied in the pharmacokinetics study of apremilast. The mean t1/2Z was 5.41 h for 30 mg·day−1 for beagle dogs after oral administration. The AUC0-t increased linearly from 3.51 to 1802.13  μ g   L − 1 ∗ h after administration of single doses.

2019 ◽  
Vol 58 (1) ◽  
pp. 31-36
Author(s):  
Li Zhou ◽  
Wang Xi ◽  
Hui Zhang ◽  
Lili Sun ◽  
Jinlong Yu ◽  
...  

Abstract A simple and enantioselective method was developed and validated for the simultaneous determination of (R)- and (S)-trelagliptin in beagle dog plasma by chiral liquid chromatography tandem mass spectrometry. Trelagliptin enantiomers and (R)-rabeprazole (as internal standard, IS) were extracted from plasma samples by liquid–liquid extraction and separated on a CHIRALCEL OX-3R column using acetonitrile-5 ammonium bicarbonate as the mobile phase in gradient elution mode. The multiple reactions monitoring transitions of m/z 358.1→341.2 and 359.9→150.1 were used to quantify trelagliptin enantiomers and IS, respectively. This method was validated for sensitivity, specificity, linearity, precision, accuracy and stability of specific analytes under various conditions. And it was successfully applied to evaluating the pharmacokinetic profile of trelagliptin enantiomers in beagle dogs after single intravenous administration of (R)-trelagliptin injection (at 1 mg/kg) and oral administration (at 6.7 mg/kg). In this study, no chiral bioconversion of (R)-trelagliptin to (S)-trelagliptin in beagle dog plasma was observed. The absolute bioavailability of (R)-trelagliptin was identified to be 128.2%.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hua-ling Xia ◽  
Xin-jie Zhao ◽  
Yu-ji Zhang ◽  
Xiao-hang Su ◽  
Bo Sun ◽  
...  

A sensitive high-performance liquid chromatography (HPLC-UV) method for determination of omeprazole in beagle dog plasma was developed and to investigate the effect of Sijunzi pills (SJZPs) on the pharmacokinetics of omeprazole in beagle dogs. The beagle dog plasma was extracted with ethyl acetate and n-hexane under alkaline conditions. Omeprazole and internal standard (IS, fluconazole) were separated on an XDB-C18 column, and acetonitrile and 0.1% trifluoroacetic acid were used as the mobile phase. Omeprazole and IS were detected by using a diode array detector. This experiment adopts the experimental design of double-cycle self-control. In the first cycle (group A), six beagle dogs were given omeprazole 0.67 mg/kg orally in a single dose. In the second period (group B), the same six beagle dogs were orally given SJZPs 0.2 g/kg twice a day for 7 consecutive days, and then, omeprazole was orally given. At the different time points after omeprazole was given in the two periods, the blood samples were collected. The concentration of omeprazole was detected by the developed HPLC method. DAS 2.0 was used to calculate the pharmacokinetic parameters of omeprazole. Under the current experimental conditions, this UPLC method showed good linearity in the detection of omeprazole. Interday and intraday precision did not exceed 10%, and the range of accuracy values were from −1.43% to 2.76%. The results of extraction recovery and stability met the requirements of FDA approval guidelines of bioanalytical method validation. The Cmax of omeprazole in group B was 61.55% higher than that in group A, and the AUC(0−t) and AUC(0−∞) of omeprazole in group B were 63.96% and 63.65% higher those that in group A, respectively. At the same time, the clearance (CL) and apparent volume of distribution (Vd) decreased in group B. In this study, an HPLC method for the determination of plasma omeprazole concentration was established. SJZPs could inhibit the metabolism of omeprazole and increase the concentration of omeprazole in beagle dogs. It is suggested that when SJZPs are combined with omeprazole, attention should be paid to the herb-drug interactions and possible adverse reactions.


2019 ◽  
Vol 15 (3) ◽  
pp. 231-242
Author(s):  
Ping Wang ◽  
Shenmeng Jiang ◽  
Yu Zhao ◽  
Shuo Sun ◽  
Xiaoli Wen ◽  
...  

Background: It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV, Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine as internal standard (IS). Methods: The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d., 1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds. Result: All calibration curves showed good linearity (r>0.99) over a wide concentration range. The intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to 107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and no severe matrix effect was observed. Conclusion: The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong Granule.


2020 ◽  
Vol 17 (1) ◽  
pp. 95-105
Author(s):  
Ramji Rathod ◽  
Faraat Ali ◽  
Amrish Chandra ◽  
Robin Kumar ◽  
Meenakshi Dahiya ◽  
...  

Background: A simple and sensitive Ultra Performance Liquid Chromatography-Mass Spectrometry method was developed and validated to measure the concentrations of Alogliptin (ALO), Linagliptin (LIN), Saxagliptin (SAX), and Sitagliptin (SIT) using Pioglitazone (PIO) as an internal standard. Methods: Chromatographic separation of six gliptins was achieved on a C-18 column (100×2.1 mm, 2.7 μm) using a mobile phase consisting of formic acid in water, 0.1%v/v: acetonitrile in gradient elution. Electrospray ionization (ESI) source was operated in the positive ion mode. Targeted MS/MS mode on a QTOF MS was used to quantify the drug utilizing the transitions of 340.1(m/z), 473.2 (m/z), 316.2 (m/z), 408.1 (m/z), and 357.1 (m/z) for ALO, LIN, SAX, SIT and PIO respectively. Results: As per ICH Q2R1 guidelines, a detailed validation of the method was carried out and the standard curves were found to be linear over the concentration ranges of 1516.0-4548.1 ng mL-1, 519.8- 1559.4 ng mL-1, 1531.4-4594.3 ng mL-1and 1519.6-4558.8 ng mL-1 for ALO, LIN, SAX and SIT respectively. Precision and accuracy results were within the acceptable limits. The mean recovery was found to be 98.8 _ 0.76 % (GEM), 102.2 _ 1.59 % (LIN), 95.3 _ 2.74 % (SAX) and 99.2 _ 1.75 % (SIT) respectively. Conclusions: The optimized validated UPLC QTOF-MS/MS method offered the advantage of shorter analytical times and higher sensitivity and selectivity. The optimized method is suitable for application in quantitative analysis of pharmaceutical dosage forms for QC laboratory.


2020 ◽  
Vol 32 (7) ◽  
pp. 1733-1740
Author(s):  
K. Durga Raja ◽  
V. Saradhi Venkata Ramana ◽  
K. Raghu Babu ◽  
B. Kishore Babu ◽  
V. Jagadeesh Kumar ◽  
...  

The objective of this work was to develop and validate a rapid, highly sensitive ultra performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the quantification of 2-isopropyl-4-(chloromethyl)thiazole in ritonavir. Chromatographic conditions of this impurity were achieved on an AQUITY UPLC column HSS (high strength silica) T3 column (100 mm long, 2.1 mm internal diameter, 1.8 μm diameter) using a gradient elution with 0.1% formic acid in water and methanol at a flow rate of 0.3 mL/min. LCMS/MS was operated under the multiple reaction mode (MRM) using electrospray ionization technique in positive ion mode and the transitions of m/z 176.1[M+H]+→140.1 for quantifier, 176.1[M+H]+→71.0 for qualifier were used to measure the impurity, respectively. The total chromatographic run time was 10 min. Full validation of the analytical method was carried out, including its system precision, selectivity, linearity, accuracy, recovery, ruggedness, stability and robustness. A linear response function was achieved in the concentration range of 0.12-1.86 μg/g with r > 0.99. The detection limit and quantitation limit of this impurity were 0.06 and 0.12 μg/g, respectively. Consistent recoveries were obtained during intra- and inter-day precision experiments in validation ranged from 80-120%. The developed method could be helpful not only for quality control and also for risk management of potential genotoxicity of this impurity in ritonavir drug substance.


2019 ◽  
Vol 104 (6) ◽  
pp. e43.2-e43
Author(s):  
S Magreault ◽  
O Chaussenery-Lorentz ◽  
T Storme ◽  
E Jacqz-Aigrain

BackgroundAntimicrobials are widely used in children but pediatric dose regimens are not always validated, and PK studies, required to validate dosage, are difficult to conduct in children. Low sampling volume limits the number of PK samples drawn per patient and analytical methods adapted to small volumes are not always available. Due to the wide inter-patient pharmacokinetic (PK) variability in children, particularly neonates, therapeutic drug monitoring is required to adapt dosage to individual patients. In such clinical and analytical context, our aim was to develop a unique, rapid and highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay to quantify 7 antibiotics (amoxicillin, azithromycin, cefotaxime, ciprofloxacin, meropenem, metronidazole and piperacillin) in low sample volumes (50 µL) for both routine monitoring and pharmacokinetic studies.MethodsAfter protein precipitation by acetonitrile, the antibiotics and their associated deuterated internal standard were separated on a Waters Acquity UPLC HSS T3 (100 mm x 2.1 mm; 1.8 µm). The mobile phases consisted of a gradient of ammonium acetate (pH 2.4; 5mM) and acetonitrile acidified with 0.1% (v/v) formic acid (started ratio of 93:7, v/v), run at 0.5 mL/min flow rate (total run time: 2.75 min). Ions were detected in the turbo-ion-spray-positive and multiple-reaction-monitoring modes.ResultsThis method was linear from 0.1–50 µg/mL. Accuracy and precision were evaluated using Quality Control (2, 10, 35 µg/mL). Validation of the method proved that precision, selectivity and stability were all within the recommended limits.ConclusionThis method has the advantage of a unique, efficient and standardized analytical tool for rapid measurement of 7 antibiotics in low blood volume. It has been successfully applied for routine activity and pharmacokinetic studies in children and neonates.Disclosure(s)Nothing to disclose.


2015 ◽  
Vol 7 (21) ◽  
pp. 9184-9189 ◽  
Author(s):  
Linxia Wang ◽  
Luming Tang ◽  
Yi Zheng ◽  
Guoquan Pan ◽  
Wei Zhu ◽  
...  

A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed to determine bosutinib in mice plasma and tissue using diazepam as the internal standard (IS).


Sign in / Sign up

Export Citation Format

Share Document