scholarly journals Electrical Conductivity-Based Estimation of Unfrozen Water Content in Saturated Saline Frozen Sand

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zejin Lai ◽  
Xiaodong Zhao ◽  
Rui Tang ◽  
Jinhong Yang

The salinity of the pore solution is closely associated with the unfrozen water content and can be reflected by variation in electrical conductivity in frozen soils. However, the influence of salinity was not considered in the existing models for estimation of unfrozen water content based on electrical conductivity measurement, and a model considering the effect of salt content was therefore developed to estimate the change of unfrozen water content of saline sands with variation of salt content (0%, 0.2%, and 1%). The unfrozen water content and the electrical resistivity were measured by nuclear magnetic resonance (NRM) and using resistance test equipment under a temperature ranging from 25°C to −15°C, respectively. The results indicated that the model using a cementation exponent expressed by a piecewise function with respect to temperature can produce a reasonable estimation on the content of unfrozen water. There was an essential difference between nonsaline and saline frozen sands in the increase of electrical resistivity due to the different reduction rates of unfrozen water content. The variation of electrical resistivity in nonsaline sand was mainly caused by the decrease of free water when temperature was higher than the freezing point and adsorbed water when temperature was lower than the freezing point, whereas the reduction of free water in two stages was the main reason for the variation of electrical resistivity in saline sand. The results and data obtained provided a basis for further developing a novel approach to measure the unfrozen water content in the field.

2018 ◽  
Vol 54 (11) ◽  
pp. 9412-9431 ◽  
Author(s):  
Jiazuo Zhou ◽  
Changfu Wei ◽  
Yuanming Lai ◽  
Houzhen Wei ◽  
Huihui Tian

2020 ◽  
Vol 25 (2) ◽  
pp. 199-209
Author(s):  
Christopher H. Conaway ◽  
Cordell D. Johnson ◽  
Thomas D. Lorenson ◽  
Merritt Turetsky ◽  
Eugénie Euskirchen ◽  
...  

Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Li ◽  
Laisheng Huang ◽  
Xiaoquan Lv ◽  
Yongjie Ren

AbstractTo determine the unfrozen water content variation characteristics of coal from the low temperature freezing based on the good linear relationship between the amplitude of the nuclear magnetic resonance (NMR) signal and movable water, pulsed NMR technology was used to test water-saturated coal samples and analyze the relationship between the unfrozen water content, the temperature and pore pressure during freeze–thaw from a microscopic perspective. Experimental results show that the swelling stress of the ice destroys the original pore structure during the freezing process, causing the melting point of the pore ice to change, so the unfrozen water content during the melting process presents a hysteresis phenomenon. When phase equilibrium has been established in the freezing process, the unfrozen water is mainly the film water on the pore surface and pore water in pores with pore radius below 10 nm. At this time, the freezing point of the water in the system decreases exponentially as the temperature increases. The micropores of the coal samples from the Jiulishan Coalmine are well-developed, and the macropores and fractures are relatively small, with most pores having a pore radius between 0.1 and 10 nm. The pore water freezing point gradually decreases with the pore radius. When the pore radius decreases to 10 nm, the freezing point of pore water starts to decrease sharply with the decreasing pore radius. When the pore radius reaches 1.54 nm, the pore water freezing point changes as fast as 600 ℃/nm.


2021 ◽  
Author(s):  
Asgeir Kydland Lysdahl ◽  
Sara Bazin ◽  
Andreas Olaus Harstad ◽  
Regula Frauenfelder

<div> <p> </p> <p>Design and construction of infrastructure in frozen permafrost soils demands for detailed investigation of the ground characteristics prior to the construction process. Variations in ground temperature affect the physical properties of permafrost, such as amount of unfrozen water content and ice content. In addition, aggradation and degradation of permafrost induce changes of its physical properties. Ground-based Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) surveying can be used to characterize near-surface ground conditions to a few tens of meters depth, especially when calibrated by boreholes. </p> </div><div> <p>Measured electrical resistivity is temperature‐dependent, which makes ERT a suitable tool in permafrost investigations. The temperature dependence is most pronounced for temperatures below freezing point. Electrical resistivity rises exponentially during freezing, when unfrozen water content within a substrate decreases. The electrical resistivity is, thus, very sensitive to phase changes between water and ice and we usually observe a lack of resistivity contrast at lithological interfaces. Direct translation from resistivity to lithology is, therefore, seldomly possible in permafrost. While ERT is successful for mapping the active layer, further interpretation of resistivity profiles is thus impeded by the lack of resistivity contrast within the permafrost. Indeed, the lithological structures are hidden by the strong resistivity of the frozen layer. By adding complementary information, IP measurements can help separate effects due to freezing and lithology. The IP effect can be measured in the time-domain, simultaneously with the ERT measurements, and with the same equipment. The IP effect occurs after abruptly interrupting the current flow between the current electrodes. The voltage across the potential electrodes does not drop to zero instantaneously, but  decays exponentially. The decay time can be used to estimate the chargeability of the ground. </p> </div><div> <p>Here, we present three examples where combined ERT- and IP-surveying was used to detect the interface between sediments and bedrock within permafrost soils, and to investigate potential environmental hazards related to run-off paths from existing and planned landfills. Study sites were an active landfill near the town of Longyearbyen, and two potentially new landfills near Longyearbyen and Barentsburg, respectively (the latter one for surplus masses resulting from coal mining). As permafrost traditionally had been seen as a natural flow barrier for such landfills, understanding its degradation owing to climate change was considered key in the planning of future sites. Eight profiles were carried out in September 2018, when expected active layer thicknesses were at their maxima. Two-dimensional inversion was performed with the commercial software RES2DINV for the resistivity data and Ahrusinv for the chargeability data.  </p> </div><div> <p>The results of our case studies show the benefit of simultaneous ERT- and IP-measurements, to both map active layer depths and determine sediment depths in permafrost areas. They also gave valuable insights in understanding potential environmental hazards related to run-off from the landfill, as a consequence of water entering the landfill in the summer period. ERT/IP surveys are flexible and relatively easy to deploy. The technique is non-destructiv and is, therefore, also suitable for maintenance studies in vulnerable arctic Tundra environments. </p> <p> </p> </div>


2014 ◽  
Vol 881-883 ◽  
pp. 1185-1188
Author(s):  
Hao Lin Yu ◽  
Wei Wang ◽  
Yuan Shun Ma ◽  
Xue Yan Xu

Unfrozen water content has an important influence on the physical and mechanical properties of frozen soil. Little research has been done on unfrozen water content of permafrost in the Northeast Region, China, so the experimental investigation was performed on Mohe permafrost (4 kinds of samples were taken from 4 kinds of undisturbed frozen soil) based on NMR method, and the relationship and between frozen temperatures (-1°C, -4°C, -7°C, -11°C, -14°C, -16°C) and unfrozen water content was obtained. The test results indicate that, Unfrozen water content decreased with the reduction of frozen temperature of permafrost and there was a power function relationship between unfrozen water content and frozen temperature. The unfrozen water content reduction of No.3 sample was the slowest, because it had the lowest water content and the least frost-heave and thawed amount. It also can be attained that ice content of Mohe permafrost became more and more, but bound water and free water content got less and less while frozen temperature fell continuously.


2018 ◽  
Vol 161 ◽  
pp. 474-481 ◽  
Author(s):  
Mingtang Chai ◽  
Jianming Zhang ◽  
Hu Zhang ◽  
Yanhu Mu ◽  
Gaochen Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document