scholarly journals Next Generation Exome Sequencing of Pediatric Asthma Identifies Rare and Novel Variants in Candidate Genes

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Neda M. Bogari ◽  
Amr A. Amin ◽  
Husni H. Rayes ◽  
Ahmed Abdelmotelb ◽  
Mohiuddin M. Taher ◽  
...  

Multiple genes have been implicated to have a role in asthma predisposition by association studies. Pediatric patients often manifest a more extensive form of this disease and a particularly severe disease course. It is likely that genetic predisposition could play a more substantial role in this group. This study is aimed at identifying the spectrum of rare and novel variation in known pediatric asthma susceptibility genes using whole exome sequencing analysis in nine individual cases of childhood onset allergic asthma. DNA samples from the nine children with a history of bronchial asthma diagnosis underwent whole exome sequencing on Ion Proton. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. The analysis showed 21 variants in the subjects, 13 had been previously identified, and 8 were novel. Also, among of which, nineteen were nonsynonymous and 2 were nonsense. With regard to the novel variants, the 2 nonsynonymous variants in the PRKG1 gene (PRKG1: p.C519W and PRKG1: p.G520W) were presented in 4 cases, and a nonsynonymous variant in the MAVS gene (MAVS: p.A45V) was identified in 3 cases. The variants we found in this study will enrich the variant spectrum and build up the database in the Saudi population. Novel eight variants were identified in the study which provides more evidence in the genetic susceptibility in asthma among Saudi children, providing a genetic screening map for the molecular genetic determinants of allergic disease in Saudi children, with the goal of reducing the impact of chronic diseases on the health and the economy. We believe that the advanced specified statistical filtration/annotation programs used in this study succeeded to release such results in a preliminary study, exploring the genetic map of that disease in Saudi children.

2020 ◽  
Author(s):  
Neda Bogari ◽  
Amr A Amin ◽  
Husni H Rayes ◽  
Ahmed Abdelmotelb ◽  
Mohiuddin M Taher ◽  
...  

Abstract Background: Multiple genes have been implicated to have a role in asthma predisposition by association studies. Paediatric patients often manifest more extensive disease and a particularly severe disease course. It is likely that genetic predisposition could play a more substantial role in this group. This study aims to identify the spectrum of rare and novel variation in known paediatric asthma susceptibility genes using whole exome sequencing-analysis in nine individual cases of childhood onset allergic asthma. Data were processed through an analytical pipeline to align sequence reads, conduct quality checks, identify and annotate variants where patient sequence differed from the reference sequence. Results: DNA samples from the nine children with a history of bronchial asthma diagnosis underwent targeted exome capture and sequencing. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. The analysis showed 21 variants in the subjects, 13 had been previously identified and 8 were novel. Also, amongst of which, nineteen were non-synonymous and 2 were nonsense. With regard to the novel variants, the 2 non-synonymous variants in the PRKG1 gene (PRKG1: p.C519W and PRKG1: p.G520W) were presented in 4 cases, and a non-synonymous variant in the MAVS gene (MAVS: p.A45V) was identified in 3 cases. The variants we found in this study will enrich the variants spectrum and build up the database in the Saudi population. Novel eight variants were identified in the study which provides more evidence in the genetic susceptibility in asthma among Saudi children.Conclusion: Screening a cohort of Saudi children for molecular identification of polymorphisms associated with allergic asthmatic response. These, together with the clinical phenotypes, revealed genetic determinants for paediatric asthma and also we compared to the similar previous reports. Providing a genetic screening map for the molecular genetic determinants of allergic disease in Saudi children, with the goal of reducing the impact of chronic diseases on the health and the economy. We belief that the advanced specified statistical filtration/annotation programs used in this study succeeded to release such results in preliminary study, exploring the genetic map of that disease in Saudi children.


2019 ◽  
Vol 15 ◽  
pp. P564-P564
Author(s):  
Victoria Fernandez ◽  
Dalton Huey ◽  
John P. Budde ◽  
Fabiana H.G. Farias ◽  
Oscar Harari ◽  
...  

2021 ◽  
Author(s):  
Zhi-Bin Wang ◽  
Jian Qu ◽  
Ying Zhang ◽  
Yi Shu ◽  
Hong-Hao Zhou ◽  
...  

Abstract Background: Meige syndrome is a type of cranial dystonia characterized by blepharospasm and infraorbital dystonia and may be related to movement disorders of the mandibular and facial muscles, mouth, jaw, tongue, pharynx and cervical muscles. However, the etiopathogenesis of this disease condition remains unknown. Our present study aimed to find clues to the pathogenic factors of Meige Syndrome using whole-exome sequencing. Results: The study included 13 clinically diagnosed patients with Meige syndrome, a subtype of facial dystonia, from eight families (marked as Family 1 to Family 8) and two matched controls in two of the eight families. The genomic DNA was extracted from peripheral blood for whole-exome sequencing (WES). Quality control filtering, genome repeat filtering, genomAD/1000g filtering, exonic & splicing site filtering, hazard filtering, Varsome (ACMG) filtering were used to find the genes predicted to be damaging in Meige Syndrome. Among 582,715 SNP or indel variants. One variant in PALM3 (rs374267554, NC_000019.9:g.14167249G>A) passed our analysis and detection criteria. We verified the variant site using Sanger sequencing in another 48 patients. Structural analysis of the PALM3 variant predicted its potential effects on pathogenicity.Conclusions: Our findings contribute to a better understanding of the impact of the PALM3 variant on the pathogenicity of Meige Syndrome. Sequencing PALM3 in larger Meige Syndrome cohorts and functional studies will need to be performed to further elucidate the association between PALM3 and the disease.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
R Morale. Sabater ◽  
B Lledo ◽  
J A Ortiz ◽  
F Lozano ◽  
A Bernabeu ◽  
...  

Abstract Study question Is it possible to identify a genetic cause of familial premature ovarian failure (POF) with whole-exome sequencing (WES)? Summary answer Whole-exome sequencing is the most efficient strategy to identify probably pathogenic mutations in different genes in pathologies of polygenic etiology such as premature ovarian failure. What is known already Premature ovarian failure is the loss of ovarian function before the age of 40, and it is a common cause of infertility in women. This pathology has a heterogeneous etiology. Some chromosomal and genetic alterations have been described, and could explain approximately 20% of cases. However, in most patients the origin remains unknown. Recent studies with next-generation sequencing (NGS) have identified new variants in candidate genes related with premature ovarian insufficiency (POI) or premature ovarian failure (POF). These genes are not only involved in processes such as folliculogenesis, but also with DNA damage repair, homologous recombination, and meiosis. Study design, size, duration Fourteen women, from 7 families, affected by idiopathic POF were included in the study from October 2019 to September 2020. Seven POF patients were recruited when they came to our clinic to undergo assisted reproductive treatment. In the anamnesis, it was found that they had relatives with a diagnosis of POF, who were also recruited for the study. The inclusion criteria were amenorrhea before 38 years old and analytical and ultrasound signs of ovarian failure. Participants/materials, setting, methods WES was performed using TrusightOne (Illumina®). Sequenced data were aligned through BWA tool and GATK algorithm was used for SNVs/InDel identification. VCF files were annotated using Variant Interpreter software. Only the variants shared by each family were extracted for analysis and these criteria were followed: (1) Exonic/splicing variants in genes related with POF or involved in biological ovarian functions (2) Variants with minor allele frequency (MAF) ≤0.05 and (3) having potentially moderate/strong functional effects. Main results and the role of chance Seventy-nine variants possibly related with the POF phenotype were identified in the seven families. All these variants had a minor allele frequency (MAF) ≤0.05 in the gnomAD database and 1000 genomes project. Among these candidate variants, two were nonsense, six splice region, one frameshift, two inframe deletion and 68 missense. Thirty-two of the missense variants were predicted to have deleterious effects by minimum two of the four in silico algorithms used (SIFT, PolyPhen–2, MutationTaster and PROVEAN). All variants were heterozygous, and all the families carried three or more candidate variants. Altogether, 43 probably damaging genetic variants were identified in 39 genes expressed in the ovary and related with POF/POI or linked to ovarian physiology. We have described genes that have never been associated to POF pathology, however they may be involved in key biological processes for ovarian function. Moreover, some of these genes were found in two families, for example DDX11, VWF, PIWIL3 and HSD3B1. DDX11 may function at the interface of replication-coupled DNA repair and sister chromatid cohesion. VWF gene is suggested to be associated with follicular atresia in previous studies. PIWIL3 functions in development and maintenance of germline stem cells, and HSD3B1 is implicated in ovarian steroidogenesis. Limitations, reasons for caution Whole-exome sequencing has some limitations: does not cover noncoding regions of the genome, it also cannot detect large rearrangements, copy-number variants (large deletions/duplications), mosaic mutations, mutations in repetitive or high GC rich regions and mutations in genes with corresponding pseudogenes or other highly homologous sequences. Wider implications of the findings: WES has previously shown to be an efficient tool to identify genes as cause of POF, and has demonstrated the polygenic etiology. Although some studies have focused on it, and many genes are identified, this study proposes new candidate genes and variants, having potentially moderate/strong functional effects, associated with POF. Trial registration number Not applicable


Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


2017 ◽  
Vol 97 (1) ◽  
pp. 49-59 ◽  
Author(s):  
N. Dinckan ◽  
R. Du ◽  
L.E. Petty ◽  
Z. Coban-Akdemir ◽  
S.N. Jhangiani ◽  
...  

Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.


Sign in / Sign up

Export Citation Format

Share Document