scholarly journals NAPG mutation in family members with hereditary hemorrhagic telangiectasia in China

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Xu ◽  
Yong-Biao Zhang ◽  
Li-Jun Liang ◽  
Jia-Li Tian ◽  
Jin-Ming Lin ◽  
...  

Abstract Background Hereditary hemorrhagic telangiectasia (HHT) is a disease characterized by arteriovenous malformations in the skin and mucous membranes. We enrolled a large pedigree comprising 32 living members, and screened for mutations responsible for HHT. Methods We performed whole-exome sequencing to identify novel mutations in the pedigree after excluding three previously reported HHT-related genes using Sanger sequencing. We then performed in silico functional analysis of candidate mutations that were obtained using a variant filtering strategy to identify mutations responsible for HHT. Results After screening the HHT-related genes, activin A receptor-like type 1 (ACVRL1), endoglin (ENG), and SMAD family member 4 (SMAD4), we did not detect any co-segregated mutations in this pedigree. Whole-exome sequencing analysis of 7 members and Sanger sequencing analysis of 16 additional members identified a mutation (c.784A > G) in the NSF attachment protein gamma (NAPG) gene that co-segregated with the disease. Functional prediction showed that the mutation was deleterious and might change the conformational stability of the NAPG protein. Conclusions NAPG c.784A > G may potentially lead to HHT. These results expand the current understanding of the genetic contributions to HHT pathogenesis.

2021 ◽  
Author(s):  
Varsha Singh ◽  
Amit Katiyar ◽  
Prabhat Malik ◽  
Sunil Kumar ◽  
Anant Mohan ◽  
...  

Abstract Significant advancement has been made in the treatment of patients with on the basis of the molecular profile. However, no such molecular target exists for squamous cell carcinoma (SQCC). Whole-exome sequencing (WES) has been in wide use for the discovery of new genetic pulmonary adenocarcinoma (ADCA) markers, which may offer more information for the development of personalized medicine for all subtypes of lung cancer. The aim of the current study is to find out novel genetic markers for non-small-cell lung carcinoma (NSCLC). WES of 19 advanced NSCLC patients (10 ADCA and 9 SQCC) was done on the Illumina HiSeq 2000 (Illumina Inc., USA). Variant calling was performed using GATK HaplotypeCaller and subsequent the impacts of variants on protein structure or function were predicted using SnpEff and ANNOVAR. Clinical impact of variants was evaluated using cancer-related archives. Somatic variants were further prioritized using knowledge-driven variant interpretation approach. Functionally important variants were validated by Sanger sequencing. We identified 24 rare single-nucleotide variants (SNVs) including 17 non-synonymous SNVs, and 7 INDELs in 18 genes possibly linked to lung carcinoma. Sanger sequencing of 10 high confidence somatic SNVs showed 100% concordance in 7 genes, whereas 80% in the remaining 3 genes. Our bioinformatics analysis identified KCNJ18, GPRIN2, TEKT4, HRNR, FOLR3, ESSRA, CTBP2, MPRIP, TBP, and FBXO6 may contribute to progression in NSCLC and could be used as new biomarkers for the treatment. Although the mechanism of GPRIN2, KCNJ12 and TEKT4 in tumorigenesis is unclear; our results suggest that these may play a major role in NSCLC and it is worth investigating in future.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2017 ◽  
Vol 176 (5) ◽  
pp. K9-K14 ◽  
Author(s):  
Sandrine Caburet ◽  
Ronit Beck Fruchter ◽  
Bérangère Legois ◽  
Marc Fellous ◽  
Stavit Shalev ◽  
...  

Context PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. Objective As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. Methods Whole-exome sequencing and Sanger sequencing confirmation. Results Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. Conclusions This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo–pituitary axis may play role in the pathogenesis of PCOS.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Keiichi Akizuki ◽  
Masaaki Sekine ◽  
Yasunori Kogure ◽  
Takuro Kameda ◽  
Kotaro Shide ◽  
...  

Abstract Background The occurrence of a mediastinal germ cell tumor (GCT) and hematological malignancy in the same patient is very rare. Due to its rarity, there have been only two reports of the concurrent cases undergoing detailed genetic analysis with whole-exome sequencing (WES), and the possible clonal relationship between the both tumors remained not fully elucidated. Methods We performed whole-exome sequencing analysis of mediastinal GCT and acute myeloid leukemia (AML) samples obtained from one young Japanese male adult patient with concurrent both tumors, and investigated the possible clonal relationship between them. Results Sixteen somatic mutations were detected in the mediastinal GCT sample and 18 somatic mutations in the AML sample. Mutations in nine genes, including TP53 and PTEN both known as tumor suppressor genes, were shared in both tumors. Conclusions All in our case and in the previous two cases with concurrent mediastinal GCT and AML undergoing with whole-exome sequencing analysis, TP53 and PTEN mutations were commonly shared in both tumors. These data not only suggest that these tumors share a common founding clone, but also indicate that associated mediastinal GCT and AML harboring TP53 and PTEN mutations represent a unique biological entity.


2020 ◽  
Vol 14 (2) ◽  
pp. 83-88
Author(s):  
Phawin Kor-anantakul ◽  
Kanya Suphapeetiporn ◽  
Somchit Jaruratanasirikul

AbstractAblepharon macrostomia syndrome (AMS) is a rare congenital disorder. To our knowledge, only 20 cases have been reported to date, and all in patients from Western countries. We report a case of AMS in a Thai patient, who presented at age 3 months with severe ectropion of both upper and lower eyelids, alopecia totalis, no palpable clitoris, and hypoplasia of both labia minora and labia majora. Trio whole exome sequencing analysis was performed, which revealed a heterozygous missense c.223G>A (p.Glu75Lys) variation in TWIST2. To our knowledge, this is the first reported case of AMS in a patient from Thailand and the first reported case of AMS in Asia.


2020 ◽  
Author(s):  
Chen Zhao ◽  
Hongyan Chai ◽  
Qinghua Zhou ◽  
Jiadi Wen ◽  
Uma M. Reddy ◽  
...  

Purpose: Pregnancy loss ranging from spontaneous abortion (SAB) to stillbirth can result from monogenic causes of Mendelian inheritance. This study evaluated the clinical application of whole exome sequencing (WES) in identifying the genetic etiology for pregnancy loss. Methods: A cohort of 102 specimens from products of conception (POC) with normal karyotype and absence of pathogenic copy number variants were selected for WES. Abnormality detection rate (ADR) and variants of diagnostic value correlated with SAB and stillbirth were evaluated. Results: WES detected six pathogenic variants, 16 likely pathogenic variants, and 17 variants of uncertain significance favor pathogenic (VUSfp) from this cohort. The ADR for pathogenic and likely pathogenic variants was 22% and reached 35% with the inclusion of VUSfp. The ADRs of SAB and stillbirth were 36% and 33%, respectively. Affected genes included those associated with multi-system abnormalities, neurodevelopmental disorders, cardiac anomalies, skeletal dysplasia, metabolic disorders and renal diseases. Conclusion: These results supported the clinical utility of WES for detecting monogenic etiology of pregnancy loss. The identification of disease associated variants provided information for follow-up genetic counseling of recurrence risk and management of subsequent pregnancies. Discovery of novel variants could provide insight for underlying molecular mechanisms causing fetal death.


2021 ◽  
Vol 12 ◽  
Author(s):  
Semyon Kolmykov ◽  
Gennady Vasiliev ◽  
Ludmila Osadchuk ◽  
Maxim Kleschev ◽  
Alexander Osadchuk

The global trend toward the reduction of human spermatogenic function observed in many countries, including Russia, raised the problem of extensive screening and monitoring of male fertility and elucidation of its genetic and ethnic mechanisms. Recently, whole-exome sequencing (WES) was developed as a powerful tool for genetic analysis of complex traits. We present here the first Russian WES study for identification of new genes associated with semen quality. The experimental 3 × 2 design of the WES study was based on the analysis of 157 samples including three ethnic groups—Slavs (59), Buryats (n = 49), and Yakuts (n = 49), and two different semen quality groups—pathozoospermia (n = 95) and normospermia (n = 62). Additionally, our WES study group was negative for complete AZF microdeletions of the Y-chromosome. The normospermia group included men with normal sperm parameters in accordance with the WHO-recommended reference limit. The pathozoospermia group included men with impaired semen quality, namely, with any combined parameters of sperm concentration <15 × 106/ml, and/or progressive motility <32%, and/or normal morphology <4%. The WES was performed for all 157 samples. Subsequent calling and filtering of variants were carried out according to the GATK Best Practices recommendations. On the genotyping stage, the samples were combined into four cohorts: three sets corresponded to three ethnic groups, and the fourth set contained all the 157 whole-exome samples. Association of the obtained polymorphisms with semen quality parameters was investigated using the χ2 test. To prioritize the obtained variants associated with pathozoospermia, their effects were determined using Ensembl Variant Effect Predictor. Moreover, polymorphisms located in genes expressed in the testis were revealed based on the genomic annotation. As a result, the nine potential SNP markers rs6971091, rs557806, rs610308, rs556052, rs1289658, rs278981, rs1129172, rs12268007, and rs17228441 were selected for subsequent verification on our previously collected population sample (about 1,500 males). The selected variants located in seven genes FAM71F1, PPP1R15A, TRIM45, PRAME, RBM47, WDFY4, and FSIP2 that are expressed in the testis and play an important role in cell proliferation, meiosis, and apoptosis.


2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


Sign in / Sign up

Export Citation Format

Share Document