scholarly journals Walking Characteristics of Dual-Arm Inspection Robot with Flexible-Cable

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yongle Wei ◽  
Jiashun Zhang ◽  
Lijin Fang

The overhead transmission line has a catenary shape, which has great influence on the dynamic characteristics of an inspection robot walking along the line and may even cause the walking-wheel to fall from the line. Compared with other similar inspection robots, the unique structure of the dual-arm inspection robot with flexible-cable is introduced. Taking the dual-arm inspection robot with flexible-cable walking along the uphill section of the line as an example, the force states of the robot when it works at acceleration, uniform speed, deceleration, and stopping were studied in detail. The corresponding force balance equations were established, and the walking-wheel torques in each working state were solved. The working states of the robot walking along the catenary shape line were simulated using ADAMS software. Simulation results show that the walking process of the robot is stable, the walking-wheels have good contact with the line, and the forces of two walking-wheels are almost balanced, which enables the robot to have good adaptability and climbing ability for the line. The prototype test that the robot walked along the line was carried out. The results of the simulation and prototype test are consistent with the theoretical analysis, so the rationality of robot structure design is verified. In the future, the navigation control and stability of the robot walking along the line will be researched, so that the robot can complete the patrol task in the real environment.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Ahmad Bala Alhassan ◽  
Xiaodong Zhang ◽  
Haiming Shen ◽  
Guo Jian ◽  
Haibo Xu ◽  
...  

To efficiently transmit electric power to consumers, the power lines need to be inspected routinely for early fault detection. Thus, power line inspection robots are designed to replace the tedious and dangerous manual inspection using linemen or helicopters. However, most of the existing inspection robots are heavy, which make them slow and prone to external wind disturbance. This paper developed a lightweight dual-arm robot and investigates its robustness to wind disturbance on a lab-scale power line structure. The dynamic equations of the robot are derived using the Lagrangian equation for appropriate motor selection. Also, the components of the robot are designed to ensure low drag coefficient to wind flow, and the mechanism of the wind force on the robot-line coupled system is presented. To study the real-time impact of the wind, a wind speed of 4.5 m/s representing one of the windiest cities in China is considered as a case study. The experimental results for different wind directions, namely, 0°, 45°, and 90°, show that the maximum vibration is 8% higher than the normal vibration of the system in a controlled environment without wind. The results demonstrate that there is little influence of the wind on the system; hence, the robot has been successfully designed and can be applied for power line inspection.


ROBOT ◽  
2013 ◽  
Vol 35 (3) ◽  
pp. 319 ◽  
Author(s):  
Lijin FANG ◽  
Yongle WEI ◽  
Guanghong TAO

1996 ◽  
Vol 42 (142) ◽  
pp. 413-425 ◽  
Author(s):  
Øyvind Armand Høydal

Abstract Stresses and velocities at depth are calculated across Jutulstraumen, an ice stream in Dronning Maud Land, draining about 1% of the Antarctic ice sheet. The force-balance study is based on data from kinematic GPS measurements on three strain nets, each consisting of 3 × 3 stakes. The maximum measured velocity is 443 m a−1 and the velocity variation over short distances is large compared with studied ice streams in West Antarctica. The surface topography together with the measured velocities across the profile indicate that the bottom topography has a great influence on the flow direction, even where the ice thickness is more than 2000 m. The basal shear stresses are calculated as 180, 227 and 146 kPa in the three Strain nets, while the corresponding driving stresses are 180, 122 and 111 kPa (±5%). The heat produced by sliding and internal deformation is sufficient to keep the base at the pressure-melting point. The annual basal melting is estimated to be about 60 mm. Investigations on the effect of temperature softening show that the flow parameter’s influence on the effective strain rate is more important than the flow parameter’s direct softening in the flow low alone. The mass flow calculated by the force-balance method is between 87 and 96% of pure plug flow and total discharge is calculated to be 13.3 ± 10 km3a-1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhen Wu ◽  
Huiwen Zhang ◽  
Shiyin Liu ◽  
Dong Ren ◽  
Xuejian Bai ◽  
...  

AbstractIce thickness has a great influence on glacial movement and ablation. Over the course of the change in thickness, area and external climate, the dynamic process of how glaciers change and whether a glacier’s changes in melting tend to be stable or irregular is a problem that needs to be studied in depth. In our study, the changes in the dynamic process of the No. 8 Glacier in Hei Valley (H8) under the conditions of different thicknesses in 1969 and 2009 were simulated based on the Full-Stokes code Elmer/Ice (http://www.csc.fi/elmer/). The results were as follows: (1) The thickness reduction in glaciers would lead to a decrease in ice surface tension and basal pressure and friction at the bottom, and the resulting extensional and compressional flow played an important role in the variations in glacial velocity. (2) The force at the bottom of the glacier was key to maintaining the overall stress balance, and the glaciers that often melted and collapsed in bedrock were more easily destroyed by the overall force balance and increased change rate of glacial thaw. (3) Temperature changes at different altitudes affected the ice viscous force. The closer the ice surface temperature was to the melting point, the greater the influence of temperature changes on the ice viscous force and ice surface velocity. Finally, we used the RCP 4.8 and 8.5 climate models to simulate the changes in H8 over the next 40 years. The results showed that with some decreases in ice surface compression and tension, the gravity component changes caused by local topography begin to control the ice flow movement on the surface of glacier, and melting of the glacial surface will appear as an irregular change. The simulation results further confirmed that the fluctuation in glacial dynamic characteristics could be attributed to the change in the gravity component caused by ablation.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Hae-Bum Yun ◽  
Se-Hoon Kim ◽  
Liuliu Wu ◽  
Jong-Jae Lee

This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.


Author(s):  
Yishuang Wang ◽  
Chao Yuan ◽  
Yongjie Zhai

The requirements of power system for the safety of overhead transmission lines are increasing. With the rapid development of mobile robot technology, the inspection of overhead transmission lines by inspection robots has become a research hotspot in recent years. Aiming at the task requirements of transmission line inspection robots and the environmental characteristics of transmission lines, researchers at home and abroad have developed a variety of inspection robots. However, most of these robots have problems such as inability to cross the strain tower, low obstacle crossing efficiency and poor safety. In order to solve the above problems, this paper proposes a new four-arm inspection robot mechanism. The robot can cross the strain tower with two different sets of arms working together. The rectangular frame structure on the walking arm improves the obstacle crossing efficiency of the robot, and the closed hanging mechanism ensures that the robot does not fall from the line. In this paper, the three-dimensional model of the robot is established, and the specific structure and motion parameters are given. Three typical obstacle-crossing modes are planned, and the motion analysis and force simulation analysis of the robot's obstacle-crossing process are carried out. The simulation result shows that the mechanism can efficiently cross the strain towers and common obstacles on the transmission line.


Robotica ◽  
2019 ◽  
Vol 38 (2) ◽  
pp. 185-206
Author(s):  
Min Cheng ◽  
Dao Xiang

SummaryElectrical distribution equipment inspection is crucial for the electric power industry. With the rapid increase in the number of electrical distribution rooms, an unattended inspection method, for example, autonomous inspection robot, is eagerly desired by the industry to make up for the deficiencies of traditional manual inspection in effectiveness and validity. Existing inspection robots designed for indoor substations are generally lack of practicality, due to the factors such as inspection requirements and robot weight. To bridge the gap between prototype and practicality, in this work, we design the first completely autonomous robotic system, LongSword, which provides a satisfying technical solution for equipment inspection with an optical zoom camera, a thermal imaging camera or a partial discharge detector. Firstly, we design a novel and flexible hardware architecture which allows the robot to move, lift, and rotate in the station to reach any desired position. Secondly, we develop an intelligent software framework which consists of several modules to achieve accurate equipment recognition and reliable failure diagnosis. Thirdly, we achieve an apposite integration of the existing technologies to implement an applicable robotic system that can fulfill the requirements of indoor equipment inspection. There are over 200 LongSwords currently serving about 160 electrical distribution rooms, some of which have been working for more than 1 year. The average precision of device status recognition is up to 99.70%, and the average inspection time of a single device is as short as 13.5 s. The feedback from workers shows that LongSword can significantly improve the efficiency and reliability of equipment inspection, which accelerates the process of setting up unmanned stations.


1995 ◽  
Vol 7 (5) ◽  
pp. 371-376 ◽  
Author(s):  
Yoshifumi Kawaguchi ◽  
◽  
Itsuo Yoshida ◽  
Keizo Iwao ◽  
Takashi Kikuta

This paper describes a new mechanism and communication system for an in-pipe inspection robot. To date, inspection robots have been limited as to their mobility to turn in a T -shaped pipe or move in a plug valve. The new mechanism based on our dual magnetic wheels overcomes these limitations without difficult controls. This dual mechanism, resembling a crawler, enable the robot to climb over steep obstacles like sleeves and dresser joints. Another drawback of earlier robots is that the friction between the pipes and the cables for communication and power supply makes it difficult for them to move long distances. A fiber-optic communication system can reduce such friction. The spools of the fiber-optic communication cables and batteries are mounted on the robot and the cables are rolled or unrolled when the robot is moving forward or backward, respectively. An experimental inspection robot has been made to confirm the efficiency of the new mechanism. However, the robot fell off a Tshaped pipe when it attempted to turn in the pipe with its position being inadequate. It is difficult to eliminate such inadequacy because the robot might be disturbed while attempting to avoid a plug or because of sensors functioning uncertainly. For that reason, a mechanism which makes a robot twist is adopted. The improved experimental robot successfully turned in a T-shaped pipe even when its position was inadequate.


2010 ◽  
Vol 97-101 ◽  
pp. 4319-4323
Author(s):  
Yu Qing Chen ◽  
Jin Huang ◽  
Hui Pu Xu ◽  
Zi Ma

This paper investigates the hand-eye calibration and points registration methods based on Cartesian coordinate’s transformation in armed robot inspection system. Different from traditional imaged based approach, the sphere radius of the inspection probe is considered; the hand-eye calibration and 3D points’ registration are both derived as constrained optimization problem. Matrix transformation of parameter separation is presented to get the approximate resolution. Finally, iterative cycles are provided to calculate the nearest points on designed surface corresponding to the inspection points. Experiment results illustrated the application of these ideas and demonstrated the validity of the proposed framework for inspection robots.


Sign in / Sign up

Export Citation Format

Share Document