scholarly journals The Study of Yin-Chen-Hao-Tang Preventing and Treating Alcoholic Fatty Liver Disease through PPAR Signaling Pathway Based on Network Pharmacology and RNA-Seq Transcriptomics

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yi-Wei Zhu ◽  
Du Li ◽  
Ting-Jie Ye ◽  
Feng-Jun Qiu ◽  
Xiao-Ling Wang ◽  
...  

Background. Alcoholic fatty liver disease (AFLD) is the first stage of the alcoholic liver disease course. Yin-Chen-Hao-Tang (YCHT) has a good clinical effect on the treatment of AFLD, but its molecular mechanism has not been elucidated. In this study, we tried to explore the molecular mechanism of YCHT in improving hepatocyte steatosis in AFLD mice through network pharmacology and RNA sequencing (RNA-Seq) transcriptomics. Methods. Network pharmacological methods were used to analyze the potential therapeutic signaling pathways and targets of YCHT on AFLD. Then, the AFLD mice model was induced and YCHT was administered concurrently. Liver injury was measured by serum alanine aminotransferase (ALT) activity and liver tissue H&E staining, and liver steatosis was determined by serum triglyceride (TG) level and liver tissue Oil Red staining. The molecular mechanism of YCHT on prevention and treatment of mice AFLD was investigated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential expression genes data obtained by liver tissue RNA-Seq. Finally, ethanol-induced AFLD AML12 hepatocyte model was established, YCHT with or without PPARα agonist pemafibrate or PPARγ inhibitor GW9662 was administered, Nile Red fluorescent staining was used to evaluate steatosis levels in AML12 hepatocytes, and qRT-PCR was used to detect PPARα and PPARγ gene expression. Results. The results of network pharmacology analysis showed that YCHT may exert its pharmacological effect on AFLD through 312 potential targets which are involved in many signaling pathways including the PPAR signaling pathway. AFLD mice experiments results showed that YCHT markedly decreased mice serum ALT activity and serum TG levels. YCHT also significantly improved alcohol-induced hepatic injury and steatosis in mice livers. Furthermore, KEGG pathway enrichment results of RNA-Seq showed that the PPAR signaling pathway should be the most relevant pathway of YCHT in the prevention and treatment of AFLD. AFLD hepatocyte model experiment results showed that YCHT could remarkably reduce hepatocyte steatosis through reducing PPARγ expression and increasing PPARα expression. Conclusions. Our study discovered that PPARγ and PPARα are the key targets and the PPAR signaling pathway is the main signaling pathway for YCHT to prevent and treat AFLD.

2021 ◽  
Author(s):  
Yi-Wei Zhu ◽  
Du Li ◽  
Ting-Jie Ye ◽  
Feng-Jun Qiu ◽  
Xiao-Ling Wang ◽  
...  

Abstract Background: Alcoholic fatty liver disease (AFLD) is the first stage of the alcoholic liver disease course. Yin-Chen-Hao-Tang (YCHT) has a good clinical effect on the treatment of AFLD, but its molecular mechanism has not been elucidated. In this study, we tried to explore the molecular mechanism of YCHT in improving hepatocyte steatosis in AFLD mice through network pharmacology and RNA sequencing (RNA-Seq) transcriptomics. Methods: Network pharmacological methods were used to analyze the potential therapeutic signaling pathways and targets of YCHT on AFLD. Then, the AFLD mice model was induced and YCHT was administered concurrently. Liver injury was measured by serum alanine aminotransferase (ALT) activity and liver tissue H&E staining, and liver steatosis was determined by serum triglyceride (TG) level and liver tissue Oil Red staining. The molecular mechanism of YCHT on prevention and treatment of mice AFLD was investigated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differential expression genes data obtained by liver tissue RNA-Seq. Finally, the key signaling pathway and targets of YCHT on AFLD were verified in the ethanol-induced AFLD hepatocyte model by pathway inhibition experiments.Results: The results of network pharmacology analysis showed that YCHT may exert its pharmacological effect on AFLD through 312 potential targets which are involved in many signaling pathways including the PPAR signaling pathway. AFLD mice experiments results showed that YCHT markedly decreased mice serum ALT activity and serum TG levels. YCHT also significantly improved alcohol-induced hepatic injury and steatosis in mice livers. Furthermore, both KEGG analysis of RNA-Seq and AFLD hepatocyte model experiments showed that the PPAR signaling pathway should be the most relevant pathway of YCHT in the prevention and treatment of AFLD. YCHT could remarkably reduce the expression of PPARγ which is related to the lipogenesis pathway. YCHT also could increase the expression of PPARα which is related to the lipolysis pathway. Conclusions: Our study discovered that PPARγ and PPARα are the key targets and the PPAR signaling pathway is the main signaling pathway for YCHT to prevent and treat AFLD.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Haochang Lin ◽  
Sha Wu ◽  
Zhiying Weng ◽  
Hongyan Wang ◽  
Rui Shi ◽  
...  

Objective. To reveal the molecular mechanism of the antagonistic effect of traditional Chinese medicine Tianma formula (TF) on dementia including vascular dementia (VaD) and Alzheimer’s disease (AD) and to provide a scientific basis for the study of traditional Chinese medicine for prevention and treatment of dementia. Method. The TF was derived from the concerted application of traditional Chinese medicine. We detected the pharmacological effect of TF in VaD rats. The molecular mechanism of TF was examined by APP/PS1 mice in vivo, Caenorhabditis elegans (C. elegans) in vitro, ELISA, pathological assay via HE staining, and transcriptome. Based on RNA-seq analysis in VaD rats, the differentially expressed genes (DEGs) were identified and then verified by quantitative PCR (qPCR) and ELISA. The molecular mechanisms of TF on dementia were further confirmed by network pharmacology and molecular docking finally. Results. The Morris water maze showed that TF could improve the cognitive memory function of the VaD rats. The ELISA and histological analysis suggested that TF could protect the hippocampus via reducing tau and IL-6 levels and increasing SYN expression. Meanwhile, it could protect the neurological function by alleviating Aβ deposition in APP/PS1 mice and C. elegans. In the RNA-seq analysis, 3 sphingolipid metabolism pathway-related genes, ADORA3, FCER1G, and ACER2, and another 5 nerve-related genes in 45 key DEGs were identified, so it indicated that the protection mechanism of TF was mainly associated with the sphingolipid metabolism pathway. In the qPCR assay, compared with the model group, the mRNA expressions of the 8 genes mentioned above were upregulated, and these results were consistent with RNA-seq. The protein and mRNA levels of ACER2 were also upregulated. Also, the results of network pharmacology analysis and molecular docking were consistent with those of RNA-seq analysis. Conclusion. TF alleviates dementia by reducing Aβ deposition via the ACER2-mediated sphingolipid signaling pathway.


2021 ◽  
Vol 29 ◽  
pp. 239-256
Author(s):  
Qian Wang ◽  
Lijing Du ◽  
Jiana Hong ◽  
Zhenlin Chen ◽  
Huijian Liu ◽  
...  

BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.


Author(s):  
Naga Chalasani ◽  
Shusuke Toden ◽  
John J Sninsky ◽  
Richard P Rava ◽  
Jerome V Braun ◽  
...  

Hepatic fibrosis stage is the most important determinant of outcomes in patients with non-alcoholic fatty liver disease (NAFLD). There is an urgent need for non-invasive tests that can accurately stage fibrosis and determine efficacy of interventions. Here we describe a novel cf-mRNA-Sequencing approach that can accurately and reproducibly profile low levels of circulating mRNAs and evaluate the feasibility of developing a cf-mRNA-based NAFLD fibrosis classifier. Using separate discovery and validation cohorts with biopsy-confirmed NAFLD (n=176 and 59, respectively) and healthy subjects (n=23), we performed serum cf-mRNA RNA-Seq profiling. Differential expression analysis identified 2498 dysregulated genes between NAFLD and healthy subjects and 134 fibrosis-associated genes in NAFLD patients. Comparison between cf-mRNA and liver tissues transcripts revealed significant overlap of fibrosis associated genes and pathways indicating that the circulating cf-mRNA transcriptome reflects molecular changes in the livers of NAFLD patients. In particular, metabolic and immune pathways reflective of known underlying steatosis and inflammation were highly dysregulated in the cf-mRNA profile of patients with advanced fibrosis. Finally, we used an elastic net ordinal logistic model to develop a classifier that predicts clinically significant fibrosis (F2-4). In an independent cohort, the cf-mRNA classifier was able to identify 50% of patients with at least 90% probability of clinically significant fibrosis. We demonstrate a novel and robust cf-mRNA-based RNA-Seq platform for non-invasive identification of diverse hepatic molecular disruptions and for fibrosis staging with promising potential for clinical trials and clinical practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
An Huang ◽  
Gang Fang ◽  
Yuzhou Pang ◽  
Zongran Pang

Longzuan Tongbi Formula (LZTB) is an effective proved prescription in Zhuang medicine for treating active rheumatoid arthritis (RA). However, its active ingredients, underlying targets, and pharmacological mechanism are still not clear in treating RA. We have applied network pharmacology to study LZTB and found that 8 herbs in LZTB and 67 compounds in the 8 herbs are involved in the regulation of RA-related genes; we have conducted pathway analysis of overlapping genes and found that 7 herbs participate in the regulations of 24 pathways associated with RA and that 5 herbs in the 7 herbs and 25 compounds in the 5 herbs participate in the regulation of hsa05323 (rheumatoid arthritis). The results indicated that all herbs in LZTB and some compounds in those herbs participate in the treatment of RA; 25 compounds are main active ingredients and hsa05323 (rheumatoid arthritis) is the major pathway in the treatment of RA. We have also found that three pathways (inflammatory mediator regulation of TRP channels, PPAR signaling pathway, and mTOR signaling pathway) might have some effect on the treatment of RA.


Sign in / Sign up

Export Citation Format

Share Document