scholarly journals Assessment of Wind Characteristics and Wind Power Potential of Gharo, Pakistan

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zahid Hussain Hulio

The objective of this research work is to assess the wind characteristics and wind power potential of Gharo site. The wind parameters of the site have been used to calculate the wind power density, annual energy yield, and capacity factors at 10, 30, and 50 m. The wind frequency distribution including seasonal as well as percentage of seasonal frequency distribution has been investigated to determine accurately the wind power of the site. The coefficient of variation is calculated at three different heights. Also, economic assessment per kWh of energy has been carried out. The site-specific annual mean wind speeds were 6.89, 5.85, and 3.85 m/s at 50, 30, and 10 m heights with corresponding standard deviations of 2.946, 2.489, and 2.040. The mean values of the Weibull k parameter are estimated as 2.946, 2.489, and 2.040 while those of scale parameter are estimated as 7.634, 6.465, and 4.180 m/s at 50, 30, and 10 m, respectively. The respective mean wind power and energy density values are found to be 118.3, 92.20, and 46.10 W/m2 and 1036.6, 807.90, and 402.60 kWh/m2. As per cost estimation of wind turbines, the wind turbine WT-C has the lowest cost of US$ Cents 0.0346/kWh and highest capacity factors of 0.3278 (32.78%). Wind turbine WT-C is recommended for this site for the wind farm deployment due to high energy generation and minimum price of energy. The results show the appropriateness of the methodology for assessing the wind speed and economic assessment at the lowest price of energy.

2013 ◽  
Vol 14 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Kazuki Ogimi ◽  
Shota Kamiyama ◽  
Michael Palmer ◽  
Atsushi Yona ◽  
Tomonobu Senju ◽  
...  

Abstract In order to solve the problems of global warming and depletion of energy resource, renewable energy systems such as wind generation are getting attention. However, wind power fluctuates due to variation of wind speed, and it is difficult to perfectly forecast wind power. This paper describes a method to use power forecast data of wind turbine generators considering wind power forecast error for optimal operation. The purpose in this paper is to smooth the output power fluctuation of a wind farm and to obtain more beneficial electrical power for selling.


Author(s):  
Paul Sclavounos ◽  
Christopher Tracy ◽  
Sungho Lee

Wind is the fastest growing renewable energy source, increasing at an annual rate of 25% with a worldwide installed capacity of 74 GW in 2007. The vast majority of wind power is generated from onshore wind farms. Their growth is however limited by the lack of inexpensive land near major population centers and the visual pollution caused by large wind turbines. Wind energy generated from offshore wind farms is the next frontier. Large sea areas with stronger and steadier winds are available for wind farm development and 5MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor at coastal sites a few miles from shore and in water depths of 10–15m. The primary impediment to their growth is visual pollution and the prohibitive cost of seafloor mounted monopoles in larger water depths. This paper presents a fully coupled dynamic analysis of floating wind turbines that enables a parametric design study of floating wind turbine concepts and mooring systems. Pareto optimal designs are presented that possess a favorable combination of nacelle acceleration, mooring system tension and displacement of the floating structure supporting a five megawatt wind turbine. All concepts are selected so that they float stably while in tow to the offshore wind farm site and prior to their connection to the mooring system. A fully coupled dynamic analysis is carried out of the wind turbine, floater and mooring system in wind and a sea state based on standard computer programs used by the offshore and wind industries. The results of the parametric study are designs that show Pareto fronts for mean square acceleration of the turbine versus key cost drivers for the offshore structure that include the weight of the floating structure and the static plus dynamic mooring line tension. Pareto optimal structures are generally either a narrow deep drafted spar, or a shallow drafted barge ballasted with concrete. The mooring systems include both tension leg and catenary mooring systems. In some of the designs, the RMS acceleration of the wind turbine nacelle can be as low as 0.03 g in a sea state with a significant wave height of ten meters and water depths of up to 200 meters. These structures meet design requirements while possessing a favorable combination of nacelle accleration, total mooring system tension and weight of the floating structure. Their economic assessment is also discussed drawing upon a recent financial analysis of a proposed offshore wind farm.


Author(s):  
E. Muljadi ◽  
C. P. Butterfield

Wind power generation has increased very rapidly in the past few years. The total U.S. wind power capacity by the end of 2001 was 4,260 megawatts. As wind power capacity increases, it becomes increasingly important to study the impact of wind farm output on the surrounding power networks. In this paper, we attempt to simulate a wind farm by including the properties of the wind turbine, the wind speed time series, the characteristics of surrounding power network, and reactive power compensation. Mechanical stress and fatigue load of the wind turbine components are beyond the scope this paper. The paper emphasizes the impact of the wind farms on the electrical side of the power network. A typical wind farm with variable speed wind turbines connected to an existing power grid is investigated. Different control strategies for feeding wind energy into the power network are investigated, and the advantages and disadvantages are presented.


2009 ◽  
Vol 11 (01) ◽  
pp. 69-95 ◽  
Author(s):  
ALASTOR M. COLEBY ◽  
DAVID R. MILLER ◽  
PETER A. ASPINALL

Research for this paper was undertaken into the relationship between public opinion on wind power and public participation in turbine site planning and design. The research focussed on the contribution of environmental attitude studies to participatory environmental impact assessment of renewable energy policy and land use. A questionnaire survey was undertaken at wind farm sites at three stages in the site planning process and at three public events where the application of wind power was a topic of discussion. The attitudinal data produced was subjected to a series of statistical tests to determine which of the attitudes revealed could be quantified significantly in terms of public opinion. The most significant responses related to the proximity of wind turbines to respondents' homes with the proposition that wind turbine designers should seek community input of the highest significance. Respondents also indicated a preference for traditional turbine structures that blended in with the landscape and remained out of sight. Respondents' personal perception of land use change regarding wind power near them was mostly significant relative to respondent age with younger respondents tending to be more accepting of wind turbine land use whilst older respondents objected. Living place was also found to be significant with urban respondents more accepting of wind power than rural ones. Fundamentally respondents although polarised for or against on certain issues, all shared a wish for more public input and participation in local land use for wind power.


2003 ◽  
Vol 27 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Niels Raben ◽  
Martin Heyman Donovan ◽  
Erik Jørgensen ◽  
Jan Thisted ◽  
Vladislav Akhmatov

An experiment with tripping and re-connecting a MW wind turbine generator was carried out at the Nøjsomheds Odde wind farm in Denmark. The experimental results are used primarily to validate the shaft system representation of a dynamic wind turbine model. The dynamic wind turbine model is applied in investigations of power system stability with relation to incorporation of large amounts of wind power into the Danish power grid. The simulations and the measurements are found to agree. The experiment was part of a large R&D program started in Denmark to investigate the impact of the increasing capacity of wind power fed into the Danish power grid.


2017 ◽  
Vol 2 (2) ◽  
pp. 569-586 ◽  
Author(s):  
Davide Trabucchi ◽  
Lukas Vollmer ◽  
Martin Kühn

Abstract. The number of turbines installed in offshore wind farms has strongly increased in the last years and at the same time the need for more precise estimations of the wind farm efficiency too. In this sense, the interaction between wakes has become a relevant aspect for the definition of a wind farm layout, for the assessment of its annual energy yield and for the evaluation of wind turbine fatigue loads. For this reason, accurate models for multiple overlapping wakes are a main concern of the wind energy community. Existing engineering models can only simulate single wakes, which are superimposed when they are interacting in a wind farm. This method is a practical solution, but it is not fully supported by a physical background. The limitation to single wakes is given by the assumption that the wake is axisymmetric. As an alternative, we propose a new shear-layer model that is based on the existing engineering wake models but is extended to also simulate non-axisymmetric wakes. In this paper, we present the theoretical background of the model and four application cases. We evaluate the new model for the simulation of single and multiple wakes using large-eddy simulations as reference. In particular, we report the improvements of the new model predictions in comparison to a sum-of-squares superposition approach for the simulation of three interacting wakes. The lower deviation from the reference considering single and multiple wakes encourages the further development of the model and promises a successful application for the simulation of wind farm flows.


2018 ◽  
Vol 27 (2) ◽  
pp. 63
Author(s):  
José C. Pérez S. ◽  
José L. Arriola P. ◽  
Max L. Espinal M.

El presente artículo inicia dando a conocer las variables meteorológicas de un parque eólico. Posteriormente se analizan las ecuaciones que determinan la ley de Betz y la distribución Weibull esto con el fin de comprender la cantidad de energía y horas aprovechadas por un aerogenerador, se continúa con el factor de carga de un parque eólico. Finalmente se muestra la influencia de la rugosidad del terreno en la variación del viento y la selección de la zona de emplazamiento. Palabras clave.- Potencial eólico, Ley de Betz, Distribución de Weibull, factor de carga, rugosidad. ABSTRACT The present work begins by describing the meteorological variables of a wind farm. Subsequently, the equations defining Betz's law and the Weibull distribution are analyzed, in order to understand the amount of power and time of operation available from a wind turbine, as well as the load factor of a wind farm. Finally, the influence of surface roughness on wind variation and the selection of a proper location are discussed. Keywords.- wind power, Betz's law, Weibull distribution, load factor, surface roughness.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiafei Long ◽  
Shengqing Li ◽  
Xiwen Wu ◽  
Zhao Jin

This article presents a novel fault diagnosis algorithm based on the whale optimization algorithm (WOA)-deep belief networks (DBN) for wind turbines (WTs) using the data collected from the supervisory control and data acquisition (SCADA) system. Through the domain knowledge and Pearson correlation, the input parameters of the prediction models are selected. Three different types of prediction models, namely, the wind turbine, the wind power gearbox, and the wind power generator, are used to predict the health condition of the WT equipment. In this article, the prediction accuracy of the models built with these SCADA sample data is discussed. In order to implement fault monitoring and abnormal state determination of the wind power equipment, the exponential weighted moving average (EWMA) threshold is used to monitor the trend of reconstruction errors. The proposed method is used for 2 MW wind turbines with doubly fed induction generators in a real-world wind farm, and experimental results show that the proposed method is effective in the fault diagnosis of wind turbines.


Author(s):  
Navid Goudarzi ◽  
Mir Hamed Mohafez ◽  
Wesley Williams

Abstract Wind power is known as an abundant source of energy that can be a promising alternative to conventional energy resources. Obtaining a competitive cost of energy for wind power harnessing technologies requires accurate resource assessment and design analyses. A robust, yet cost-effective wind turbine structure design reduces the chance of system failure in extreme events; it also reduces the operation and maintenance cost. This work obtains the required inputs for conducting fluid structure interaction (FSI) analyses of 3D Bergey Excel 10kW wind turbine installed in Jennette’s Pier in North Carolina. Six years (2013–2018) wind data (magnitude and direction) at the Jennette’s Pier are used to obtain the site wind characteristics. Some worthwhile data such as prevailing wind direction and wind speed, average air temperature, pressure and density are determined through this study. The flow field around the turbine blades is simulated to obtain the pressure distribution and aerodynamic coefficients using computational fluid dynamics (CFD) software, ANSYS Workbench. The results will be beneficiary to the researchers and engineers in evaluating the turbine performance in sites with wind characteristics similar to Jennette’s Pier. Moreover, the outputs of the work can be used for designing enhanced drivetrain components.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijeet M. Malge ◽  
Prashant Maruti Pawar

Purpose Three different configurations of vertical axis wind turbines (VAWT) were fabricated by changing the storey height and their orientations. The purpose of this study is to find the effect of storey height and orientation on the performance of wind turbines. The multistory VAWT has three storeys. The first configuration had increased middle storey height, with 0–90-0 orientation of blades. Wherein the second turbine had equal storey heights. The third configuration had increased middle storey height with 0–120-240 orientation of blades. The blades were tested numerically and experimentally. Design/methodology/approach In this research work, prototypes of innovative multistory VAWT were built with different configurations and orientations. Three configurations of three-storey VAWT were fabricated by varying the height of storey of turbines. The orientations were made by keeping the storeys orthogonal to each other. Multistory VAWT was tested numerically and experimentally. ANSYS Fluent was used for computational fluid dynamic analysis of VAWT. K-epsilon model was used for numerical analysis of wind turbine. Experimentation was carried out in a wind tunnel for different tip speed ratios (TSR). Findings The three configurations of innovative multistory VAWT were tested numerically and experimentally for different TSR. It has been found that the VAWT with equal storey height had a better performance as compared to the other two configurations with increased middle storey height. The power coefficient of equal storey height VAWT was about 22%, wherein the power coefficient of turbines with reduced upper and lower storey height was between 5%–8% Research limitations/implications The research work of multi-storey VAWT is very novel and original. The findings of the research will contribute to the existing work done in the field of VAWT. This will help other researchers to have insight into the development of multistory VAWT. The effect of storey height and configuration of multi-storey VAWT is studied numerically and experimentally, which concludes that the performance of equal storey is superior as compared to other configurations. Practical implications The multi-storey concept of VAWT was developed to counter the problem of wind direction. The blades of each storey were arranged orthogonal to each other. This helped to harness wind power irrespective of the direction of the wind. This will make the VAWT more sustainable and financially viable for domestic use. Social implications The turbines are specially designed for remotely located housed in rural areas where the power grid is not yet reached. Users can install the turbine on their rooftop and harness wind power of 100 W capacity. This will help them to make their life easy. Originality/value This research work is very original and first of a kind. The multistory concept of the wind turbine was checked for the effect of storey height and orientations of blades on its performance. Different configurations and orientations of the vertical axis were designed and developed for the first time.


Sign in / Sign up

Export Citation Format

Share Document