scholarly journals Critical Dynamic Stress and Accumulative Deformation Evolution of Embankment Silty Clay Subjected to Cyclic Freeze-Thaw

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lina Wang ◽  
Zhiyu Weng ◽  
Tianliang Wang ◽  
Qiang Liu ◽  
Guoyu Li ◽  
...  

In cold regions, the permanent settlement of embankment is mainly caused by the repeated freeze-thaw process and long-term repeated train loads. Meanwhile, the critical dynamic stress (σdcr) is an important parameter index for determining embankment stability. Therefore, the accumulative permanent deformation evolution and critical dynamic stress of embankment soil subjected to cyclic freeze-thaw were studied using dynamic triaxial tests. Firstly, a numerical model for calculating critical dynamic stress considering the repeated freeze-thaw process was proposed, which shows that the critical dynamic stress of embankment soil rapidly decreases in the first two repeated freeze-thaw cycles, whereas it tends to be stable after the subsequent freeze-thaw process. Next, based on the normalization of the critical dynamic stress, an explicit model for predicting accumulative plastic strain (εp) of embankment soil was established. The above model considers freeze-thaw times, repeated dynamic stress amplitude (σd), and loading times, in which all material parameters of Qinghai-Tibet silty clay were presented. Thus, the critical dynamic stress and accumulative plastic strain models established in this paper can be applied to judge the embankment stability and predict the embankment settlement induced by train loads in cold regions.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5722
Author(s):  
Qishu Zhang ◽  
Wuming Leng ◽  
Bin Zhai ◽  
Fang Xu ◽  
Junli Dong ◽  
...  

Critical dynamic stress (σcri) and accumulative plastic strain (εp) are primary indicators regarding the dynamic stability of unbound granular materials (UGMs). This study aims to seek an effective method to evaluate the dynamic stability of UGMs used in railway subgrades. First, the dynamic characteristics of an UGM used in railway subgrade bed construction were investigated by performing a series of large-scale cyclic triaxial tests, with the results showing that εp versus cycle number (N) curves can be categorized into stable, failure, and critical patterns. Grey relational analyses were then established, where the analyzed results demonstrated that the εp–N curve pattern and final accumulative plastic strain (εs) of the stable curves are strongly correlated with the moisture content (w), confining pressure (σ3), and dynamic deviator stress (σd). The analyzed grey relational grades distributed in a narrow range of 0.72 to 0.81, indicating that w, σ3, and σd have similar degrees of importance on determining the εp–N curve patterns and the values of εs of the UGM. Finally, a data processing method using a back-propagation (BP) neural network is introduced to analyze the test data, and an empirical approach is developed to evaluate the σcri (considering the effects of σ3 and w) and εs (considering the effects of σ3, w, and σd) of the UGM. The analyzed results illustrated that the developed method can effectively reflect the linear/non-linear relationships of σcri and εs with respect to σ3 and/or σd. The σcri approximately increases linearly with increasing σ3, and a simple empirical formula is proposed for the σcri. In addition, εs and its variation rate increase non-linearly with increasing σd but decrease non-linearly as σ3 increases.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Xiaolan Liu ◽  
Xianmin Zhang ◽  
Xiaojiang Wang

AbstractThis paper describes an investigation into the factors influencing the resilient modulus and cumulative plastic strain of frozen silty clay. A series of dynamic triaxial tests are conducted to analyze the influence of the temperature, confining pressure, frequency, and compaction degree on the resilient modulus and cumulative plastic strain of frozen silty clay samples. The results show that when the temperature is below − 5 °C, the resilient modulus decreases linearly, whereas when the temperature is above − 5 °C, the resilient modulus decreases according to a power function. The resilient modulus increases logarithmically when the frequency is less than 2 Hz and increases linearly once the frequency exceeds 2 Hz. The resilient modulus increases as the confining pressure and compaction degree increase. The cumulative plastic strain decreases as the temperature decreases and as the confining pressure, frequency, and compaction degree increase. The research findings provide valuable information for the design, construction, operation, maintenance, safety, and management of airport engineering in frozen soil regions.


2019 ◽  
Vol 11 (18) ◽  
pp. 5141 ◽  
Author(s):  
Wei ◽  
Li ◽  
Han ◽  
Han ◽  
Wang ◽  
...  

To achieve the purposes of disposing industry solid wastes and enhancing the sustainability of subgrade life-cycle service performance in seasonally frozen regions compared to previous research of modified silty clay (MSC) composed of oil shale ash (OSA), fly ash (FA), and silty clay (SC), we identified for the first time the axial deformation characteristics of MSC with different levels of cycle load number, dynamic stress ratio, confining pressure, loading frequency, and F-T cycles; and corresponding to the above conditions, the normalized and logarithmic models on the plastic cumulative strain prediction of MSC are established. For the effect of cycle load number, results show that the cumulative plastic strain of MSC after 1, 10, and 100 cycle loads occupies for 28.72%~35.31%, 49.86%~55.59%, and 70.87%~78.39% of those after 8000 cycle loads, indicating that MSC possesses remarkable plastic stability after 100 cycles of cycle loads. For the effect of dynamic stress ratio, confining pressure, loading frequency, and F-T cycles, results show that dynamic stress ratio and F-T cycles are important factors affecting the axial deformation of MSC after repeated cycle loads; and under the low dynamic stress ratio, increasing confining pressure and loading frequency have insignificant effect on the axial strain of MSC after 8000 loads. In term of the normalized and logarithmic models on the plastic cumulative strain prediction of MSC, they have a high correlation coefficient with testing data, and according to the above models, the predicted result shows that the cumulative plastic strain of MSC ranges from 0.38 cm to 2.71 cm, and these predicted values are within the requirements in the related standards of highway subgrades and railway, indicating that the cumulative plastic strain of MSC is small and MSC is suitable to be used as the subgrade materials.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Fang Xu ◽  
Wuming Leng ◽  
Rusong Nie ◽  
Qishu Zhang ◽  
Qi Yang

A new prestressed reinforcement device (PRD) consisting of two lateral pressure plates (LPPs) and a reinforcement bar is developed to strengthen soil embankments by improving the soil confining pressure and providing lateral constraint on embankment slopes. The reinforcement effects of PRDs were demonstrated by investigating the beneficial effects of increasing confining pressure on the soil behavior via the performance of a series of large-scale static and cyclic triaxial tests on a coarse-grained embankment soil. The results show that PRDs can effectively improve the soil shear strength, bearing capacity, ability to resist elastic and plastic deformation, critical dynamic stress, and dynamic shear modulus, and empirical methods were also developed to determine the critical dynamic stress and initial dynamic shear modulus of the embankment soil. Moreover, 3D finite element analyses (FEAs) with an LPP width of 1.2 m were performed to analyze the additional stress field in a prestressed heavy-haul railway embankment. The FEAs showed that the additional stress at a given external distance from the border of an LPP first increased to a maximum value and then gradually decreased with increasing depth; the additional stress was transferred to the zones where the subgrade tends to have higher stresses with peak stress diffusion angles of 34° (slope direction) and 27° (longitudinal direction); and a continuous effective reinforcement zone with a minimum additional stress coefficient of approximately 0.2 was likely to form at the diffusion surface of the train loads, provided that the net spacing of the LPPs was 0.7 m. The reinforcement zone above the diffusion surface of the train loads can act as a protective layer for the zones that tend to have higher stresses. Finally, the advantages and application prospects of PRDs are discussed in detail. The newly developed PRDs may provide a cost-effective alternative for strengthening soil embankments.


Author(s):  
G. Behzadi ◽  
W. O. Yandell

A preliminary step in the prediction of rutting and cracking in a number of accelerated loading facility trials in Australia is presented. The results of laboratory repeated load triaxial tests were used to characterize the residual and resilient deformation of a silty clay subgrade material. The analysis of permanent deformation indicated that the well-known model ∈p = INS can be used to estimate the accumulated strain at any number of loading cycles. The parameter S (the slope of the line in a plot of log ∈p –log N) was found to be independent of stress and density, but very small increases were observed as moisture content increased. The parameter I (the intercept in a plot of log ∈p –log N) was found to be most sensitive to deviator stress. The test results also indicated that I increased with increasing moisture content and decreased as dry density increased. The analysis revealed that an exponential relationship existed between I and deviator stress. This relationship was used to develop a constitutive model for silty clay based on the previously mentioned well-known model. The constitutive model obtained would be able to predict the plastic strain under any number of loads at any specified stress level. Resilient deformation analysis has shown that resilient modulus initially decreased rapidly with increasing deviator stress and then increased slightly or was nearly constant. The elastic and plastic parameters will be used as input for performance predictors such as VESYS and Mechano-Lattice.


2018 ◽  
Vol 153 ◽  
pp. 130-143 ◽  
Author(s):  
Jiahui Wang ◽  
Xianzhang Ling ◽  
Qionglin Li ◽  
Feng Zhang ◽  
Yan Li

2016 ◽  
Vol 20 (4) ◽  
pp. 1 ◽  
Author(s):  
Jian Li ◽  
Shang-Xiong Chen ◽  
Ling-Fa Jiang

The dynamic properties of subgrade materials are critical factors affecting stability within the traffic engineering discipline. Remolded red clays are frequently used as subgrade filling materials, however, to date, a paucity of data exist on to the dynamic properties of this material. Accordingly, a large number of dynamic triaxial tests under cyclic loads were carried out to quantify the suitability of remolded red clay as subgrade filling. Several potentially influencing dynamic factors were considered, including dynamic stress, vibration frequency, consolidation confining pressure, consolidation ratio and compactness. Plastic strain and dynamic strength curves of remolded red clays under varying dynamic loads and load histories have been developed, in addition to the inclusion of those influencing factors. Test results show that within the range not exceeding the inherent strength of the test samples, increases soil compactness, confining pressure, and vibration frequency serves to enhance overall dynamic power in concurrence with retarding the development of accumulated plastic strain. Conversely, an improvement in the amplitude of the dynamic stress and consolidation ratio was shown to cause a decrease in dynamic strength and acceleration in the development of accumulated plastic strain. An empirical equation relating critical dynamic strength and load histories of remolded red clay has been developed for the provision of fundamental reference data for future studies. Pruebas sobre la influencia de la carga dinámica y la historia de carga en las propiedades dinámicas de arcilla roja reestructurada ResumenLas propiedades dinámicas de los materiales de base son factores cruciales que afectan la estabilidad en la ingeniería de tráfico. La arcilla roja reestructurada se utiliza frecuentemente como material de relleno de bases, sin embargo, hasta la fecha, existe una escasez de información sobre las propiedades dinámicas de este material. De acuerdo con esto, se realizó un gran número de pruebas triaxiales dinámicas bajo cargas cíclicas para cuantificar la pertinencia de la arcilla roja reestructurada como material de relleno en bases. Se consideraron varios factores dinámicos que podrían ser determinantes, como la fuerza dinámica, la frecuencia de vibración, la presión de confinamiento, el índice de consolidación y la compactibilidad. Se desarrollaron las curvas de fuerza plástica y dinámica de arcilla roja reestructurada con varias cargas dinámicas e historia de cargas, además de la inclusión de los factores determinantes. El resultado de las pruebas muestra que dentro del rango de la fuerza inherente a las muestras de estudio, el incremento de la compactibilidad del suelo, la presión de confinamiento y la frecuencia de vibración sirven para mejorar, en general, el poder dinámico al tiempo que retrasa el desarrollo de la fuerza plástica. Al contrario, el mejoramiento de la amplitud de la fuerza dinámica y el índice de consolidación muestra una reducción en la fuerza dinámica y una aceleración en el desarrollo de la fuerza plástica acumulada. Finalmente, se desarrolló una ecuación empírica que relaciona la fuerza dinámica crítica y las cargas históricas de arcilla roja reestructurada con el fin de proveer información de referencia para estudios futuros.


2014 ◽  
Vol 501-504 ◽  
pp. 38-42
Author(s):  
Li Na Wang ◽  
Xian Zhang Ling ◽  
Qiong Lin Li ◽  
Jing Wang ◽  
Yan Hui Liu

To evaluate the influence factors of accumulative plastic strain of frozen silt clay, the dynamic cyclic triaxial tests with stress-controlled are conducted to investigate the behaviors of frozen soil induced by cyclic loading. The relationships between accumulative plastic strain and vibration numbers for frozen silt at different dynamic stress amplitudes under different temperature, vibration frequency and initial water content are obtained. The test results show that the accumulative plastic strains increase with rising tempeature, increasing the vibration numbers and dynamic stress amplitude. The accumulative plastic strain rate increases with increasing the vibration frequency. With increasing the initial water content, the accumulative plastic strain of frozen silt clay increases.


Sign in / Sign up

Export Citation Format

Share Document