scholarly journals Formulation and development of Serratiopeptidase enteric coated tablets and analytical method validation by UV Spectroscopy

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Vijay Kumar Panthi ◽  
Saurav Kumar Jha ◽  
Raghvendra Chaubey ◽  
Rudra Pangeni

Serratiopeptidase (SRP) is a proteolytic enzyme that emerged as one of the most potent anti-inflammatory and analgesic drugs. The purpose of the present study was to formulate and evaluate enteric-coated tablets for SRP and investigate their stability using a simple and validated analytical method by ultraviolet (UV) spectroscopy. The colloidal silicon dioxide (2.50%), sodium starch glycolate (3.44%), and crospovidone (2.50%) were used as appropriate excipients for the development of core part of tablets. To protect the prepared tablets from acidic environment in the stomach, white shellac, castor oil, HPMC phthalate 40, and ethyl cellulose were used. The seal coating and enteric coating attained were 2.75% and 6.74%, respectively. SRP was found to be linear at 265 nm in the concentration range of 25–150 µg/mL. The results revealed that our developed method was linear (R2 = 0.999), precise (RSD % = 0.133), and accurate (% recovery = 99.96–103.34). The formulated SRP tablets were found to be stable under accelerated conditions as well as under room temperature for 6 months (assay %: >97.5%). The in vitro drug release study demonstrated that enteric-coated tablets were able to restrict SRP release in both acidic environments: 0.1 N HCl and simulated gastric fluid (pH 1.2). Moreover, at 60 minutes, the formulated SRP tablets revealed 13.0% and 8.98% higher drug release in phosphate buffer (pH 6.8) and simulated intestinal fluid (pH 6.8), respectively, compared to the marketed tablet formulation. This study concludes that enteric-coated tablets of SRP with higher drug release in the intestine can be prepared and examined for their stability using validated analytical technique of UV spectroscopy.

Author(s):  
Putra Imwa ◽  
Kusumawati Igaw

Objective: As an antidiabetic drug, metformin hydrochloride (HCl) has been well known to possess low oral bioavailability and short half-life. In this study, we prepared the drug delivery system (DDS) of metformin HCl and clinoptilolite as its carrier. The in vitro drug release profile was further investigated.Methods: DDS was made by encapsulating metformin HCl on clinoptilolite using the wet impregnation method at various pH and initial concentration of metformin HCl. Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), and N2 Sorption Analyzer were used to characterize the as-synthesized DDS. Drug release study was conducted by stirring the DDS in simulated gastric fluid and simulated intestinal fluid over 12 h.Results: The encapsulation process was achieved optimally at pH 7.0 and initial concentration of metformin HCl of 300 mg/l (CLI2-300 denoted DDS). The results of FTIR and N2 sorption analyzer confirmed the existence of metformin HCl on clinoptilolites. Meanwhile, the XRD result showed that the crystallinity of clinoptilolites remained unchanged after the encapsulation process. The cumulative drug release in the simulated gastric fluid was found to be higher than that in the simulated intestinal fluid, which indicated the potent influence of pH on the release properties of the drugs. The drug release kinetics of metformin HCl from clinoptilolite was best fitted into the Korsmeyer-Peppas model with non-Fickian transport mechanism.Conclusion: We found that clinoptilolite was suitable for DDS application, particularly as a carrier of metformin HCl.


1976 ◽  
Vol 10 (10) ◽  
pp. 588-591 ◽  
Author(s):  
P. L. Madan ◽  
Marie Minisci

Seventeen commercial brands of enteric-coated sodium salicylate tablets have been evaluated for their ability to resist release of their active ingredient in acidic gastric environment. The results show that although the tablets meet the official enteric-coated tablet disintegration test requirement, the coating on at least ten brands failed to provide the necessary protection. simulated gastric fluid, the fluid was replaced with simulated intestinal fluid (without enzymes).4 A disk was added to each tube and the apparatus was operated until the tablets showed evidence of softening, crackling, or complete disintegration.


2017 ◽  
Vol 9 (4) ◽  
pp. 54 ◽  
Author(s):  
Jose Raul Medina ◽  
Jonathan Hernandez ◽  
Marcela Hurtado

Objective: To characterize the in vitro release of carbamazepine tablets and benzoyl metronidazole suspensions using the flow-through cell apparatus and simulated gastrointestinal fluids.Methods: Tegretol® tablets, Flagyl® suspension, and generic formulations of each were tested. Release studies were performed using an automated flow-through cell apparatus. Simulated gastric fluid (with and without pepsin) and simulated intestinal fluid (without pancreatin) at 16 ml/min and fasted state simulated intestinal fluid at 8 ml/min, all at 37.0±0.5 °C, were used as dissolution media. The quantity of dissolved carbamazepine and benzoyl metronidazole was determined at 5-min intervals until 60 min at 285 and 278 nm, respectively. Percentage dissolved at 60 min, mean dissolution time, dissolution efficiency values, and t10%, t25%, t50% and t63.2% were calculated. Mean values for all parameters were compared between the reference and generic formulations using Studentʼs t-test. Dissolution data were fitted to different kinetic models.Results: Simulated gastric fluid without pepsin showed no discriminative capability for carbamazepine tablets. Significant differences were observed between the reference and generic formulations for almost all parameters (*P<0.05). In some cases, the logistic model best described the in vitro release of both drugs.Conclusion: Using an apparatus and media that best simulates the gastrointestinal environment, we identified differences in the rate and extent of dissolution of both drugs that could help to optimise the design of interchangeable formulations. Based on the physicochemical characteristics of carbamazepine and benzoyl metronidazole and the conditions in which the formulations were tested, these differences could be of clinical relevance. 


Author(s):  
Juliati Br Tarigan ◽  
Djendakita Purba ◽  
Cut Fatimah Zuhra

 Objective: This study demonstrated the incorporation of Vitamin E from palm fatty acid distillate onto crosslinked galactomannan phosphate (CGP) matrix.Methods: CGP was obtained from the crosslinking reaction of galactomannan from Arenga pinnata (GAP) with tri-sodium metaphosphate (TMF) ranging from 1:1 to 4:3 while incorporation of Vitamin E was conducted in two steps to form films. The reliability study of Vitamin E in CGPVE was conducted using a solution of pepsin and sodium chloride and also in solution of pancreatin and buffer phosphate.Results: The Fourier-transform infrared spectrum indicated the presence of phosphate in CGP while the scanning electron microscope images depicted the changes of surface morphology from smooth (GAP) to rough and hollow (CGP) which confirmed that crosslink had occurred. The swelling study of CGP showed that the swelling indexes were similar and decreased with the increase of TMF. The efficiency of CGP to absorb Vitamin E ranged from 89.66% to 91.09%. The in vitro releasing study of Vitamin E in simulated gastric fluid and simulated intestinal fluid showed that only a small amount of Vitamin E was released.Conclusions: This study demonstrated that CGP can be prepared and is potentially useful for drug delivery to the colon.


2016 ◽  
Vol 695 ◽  
pp. 284-288 ◽  
Author(s):  
Simona Cavalu ◽  
Vasile Laslo ◽  
Florin Banica ◽  
Simona Ioana Vicas

The aim of this study is to develop a lyophilized matrix (microspheres) as a controlled delivery system for nanoselenium particles, using different formulation based on alginate or agar. Elemental selenium is considered as the least toxic of all selenium forms and in the same time supplementation with its nanosize particles has the same or better bioavailability compared to its salts. In our study, nanosized elemental selenium was obtained by fermentation technology using probiotic lactic acid bacteria (Lactobacillus casei). The microspheres have been characterized from structural point of view by using different techniques: FTIR spectroscopy, X-ray Diffraction and SEM. Each individual natural polymer has its own characteristic advantages and disadvantages; it is commonly accepted that naturally derived matrix often show an excellent balance between the mechanical properties, swelling and dissolution capacity. The optimized formulation was proposed upon in vitro dissolution study using Diferential Pulsed Voltammetry in order to measure the concentration of selenium released in simulated gastric fluid (pH=1.2) and simulated intestinal fluid (pH=8.1). The cumulative release of selenium from different formulations showed large differences with respect to matrix composition. We demonstrated that both alginate and agarose-based formulations are suitable to be used in basic environment such as small or large intestine. The results might be of high importance as absorption of selenium occurs mainly in the duodenum, caecum and colon (more than 85%).


2021 ◽  
Vol 21 (7) ◽  
pp. 3651-3655
Author(s):  
Woo Chang Kwon ◽  
Moonhee Choi ◽  
Kyung Chan Kang ◽  
Dong Hyun Kim

A formulation for controlled delivery of ibuprofen (IBU) involving montmorillonite (MMT) nanoclays has been proposed. The present work has investigated the beneficial effect of MMT in improving controlled delivery of IBU. The intercalation of IBU into the interlayer of MMT was studied under different processing conditions such as reaction time and initial concentration of IBU. To characterize the IBU/MMT composites, X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) were performed. The release behavior of IBU from IBU/MMT composites have been investigated under vitro conditions using buffer media of simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37 °C. Controlled release of IBU from IBU/MMT composite has been observed during in vitro release experiments. Different mathematical models were used for fitting our experimental results, among them the best fitting was found for Higuchi equation based on the parabolic diffusion process.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 448 ◽  
Author(s):  
Maeng ◽  
Yoon ◽  
Chun ◽  
Kim ◽  
Jang ◽  
...  

D-allulose, a C-3 epimer of D-fructose, is a rare monosaccharide used as a food ingredient or a sweetener. In the present study, the in vitro metabolic stability of D-allulose was examined in biorelevant media, that is, simulated gastric fluid (SGF) and fasted state simulated intestinal fluid (FaSSIF) containing digestive enzymes, and in cryopreserved human and rat hepatocytes. The hepatocyte metabolic stabilities of D-allulose were also investigated and compared with those of fructose and erythritol (a sugar-alcohol with no calorific value). D-allulose was highly stable in SGF (97.8% remained after 60 min) and in FaSSIF (101.3% remained after 240 min), indicating it is neither pH-labile nor degraded in the gastrointestinal tract. D-allulose also exhibited high levels of stability in human and rat hepatocytes (94.5–96.8% remained after 240 min), whereas fructose was rapidly metabolized (43.1–52.6% remained), which suggested these two epimers are metabolized in completely different ways in the liver. The effects of D-allulose on glucose and fructose levels were negligible in hepatocytes. Erythritol was stable in human and rat hepatocytes (102.1–102.9% remained after 240 min). Intravenous pharmacokinetic studies in rats showed D-allulose was eliminated with a mean half-life of 72.2 min and a systemic clearance of 15.8 mL/min/kg. Taken together, our results indicate that D-allulose is not metabolized in the liver, and thus, unlikely to contribute to hepatic energy production.


2014 ◽  
Vol 50 (2) ◽  
pp. 329-336
Author(s):  
Panikumar Durga Anumolu ◽  
Sirisha Neeli ◽  
Haripriya Anuganti ◽  
Sathesh Babu Puvvadi Ranganatham ◽  
Subrahmanyam Chavali Venkata Satya

The dissolution process is considered an important in vitro tool to evaluate product quality and drug release behavior. Single dissolution methods for the analysis of combined dosage forms are preferred to simplify quality control testing. The objective of the present work was to develop and validate a single dissolution test for a telmisartan (TEL) and amlodipine besylate (AML) combined tablet dosage form. The sink conditions, stability and specificity of both drugs in different dissolution media were tested to choose a discriminatory dissolution method, which uses an USP type-II apparatus with a paddle rotating at 75 rpm, with 900 mL of simulated gastric fluid (SGF without enzymes) as the dissolution medium. This dissolution methodology provided good dissolution profiles for both TEL and AML and was able to discriminate changes in the composition and manufacturing process. To quantify both drugs simultaneously, a synchronous first derivative spectrofluorimetric method was developed and validated. Drug release was analyzed by a fluorimetric method at 458 nm and 675 nm for AML and TEL, respectively. The dissolution method was validated as per ICH guidance.


Author(s):  
ALIYAH ALIYAH ◽  
EMILIA UTOMO ◽  
ANDI DIAN PERMANA ◽  
ERNAWATI

Objective: The aim of this study was to develop a liquisolid formulation of propranolol hydrochloride to obtain an improved sustained release profile by varying the ratio of liquid vehicles. Methods: In this study, propranolol hydrochloride (PPH) was dispersed in the combination of propylene glycol and polysorbate 80, as the liquid vehicles, with different ratios. Eudragit® RL and Aerosil® were used as carrier and coating materials, respectively, to produce a dry and free-flowing powder. In addition, HPMC was used to amplify the retardation effect. The prepared formulations were evaluated for its physicochemical properties, including loss on drying, flow rate, angle of repose calculation, drug content analysis, FT-IR spectroscopy, as well as dissolution studies. The obtained dissolution profiles were subsequently fitted to the mathematical model in order to determine the drug kinetics. Results: The results show that all formulations performed dry and free-flowing granules containing PPH in the range of 7-9%. Furthermore, all the prepared formulations were able to sustain the drug release for a total of 8 h in two different dissolution media, namely simulated gastric fluid and simulated intestinal fluid. F4 containing propylene glycol and polysorbate 80 (1:2) possessed the lowest drug release rate. It was also obtained that F1 and F3 followed first-order kinetics while F2, F4, and F5 complied with the Higuchi model. Conclusion: Overall, there was no difference in all the dissolution profiles based on the calculation of the difference and similarities factor.


Author(s):  
Bhabani Satapathy ◽  
Asuprita Patel ◽  
Rudra Sahoo ◽  
Subrata Mallick

Crystal engineering is an integral part of the drug development research. Crystal forms can modify the physicochemical properties of the parent drug molecule. The present work was aimed at the synthesis and characterization of crystalline product of lamotrigine (LT), a FDA approved anti-epileptic drug, with citric acid (CA) to improve its release in gastric region and oral absorption. The crystalline products of LT-CA were developed by solvent evaporation method using ethanol-water as the solvent system. Appearance of new charac-teristic peaks in the FTIR spectra for the crystal products indicated formation of new crystal state. In DSC thermogram, melting point of the experimental crystal products was different than that of the pure drug. Further, formation of new crystalline phase was confirmed from XRD data through the identification of new sharp peaks for the selected crystal products. A higher cumulative percen-tage of drug release was observed for the crystal products than the free drug within 60 min of drug release in simulated gastric fluid. However, in vivo studies are warranted for the future technology transfer of the product at industrial scale.


Sign in / Sign up

Export Citation Format

Share Document