scholarly journals Reusable, Noninvasive, and Sensitive Fluorescence Enhanced ZnO-Nanorod-Based Microarrays for Quantitative Detection of AFP in Human Serum

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Saima Rafique ◽  
Farukh Kiyani ◽  
Sumbal Jawaid ◽  
Rubina Nasir ◽  
Mahmoosh Ahmad ◽  
...  

The fabrication of sensitive protein microarrays such as PCR used in DNA microarray is challenging due to lack of signal amplification. The development of microarrays is utilized to improve the sensitivity and limitations of detection towards primal cancer detection. The sensitivity is enhanced by the use of ZnO-nanorods and is investigated as a substrate which enhance the florescent signal to diagnose the hepatocellular carcinoma (HCC) at early stages. The substrate for deposition of ZnO-nanorods is prepared by the conventional chemical bath deposition method. The resultant highly dense ZnO-nanorods enhance the fluorescent signal 7.2 times as compared to the substrate without ZnO-nanorods. The microarray showed sensitivity of 1504.7 ng ml-1 and limit of detection of 0.1 pg ml-1 in wide dynamic range of 0.05 pg-10 μg ml-1 for alpha fetoprotein (AFP) detection in 10% human serum. This immunoassay was successfully applied for human serum samples to detect tumor marker with good recoveries. The ZnO-nanorod substrate is a simple protein microarray which showed a great promise for developing a low-cost, sensitive, and high-throughput protein assay platform for several applications in both fundamental research and clinical diagnosis.

2015 ◽  
Vol 93 (11) ◽  
pp. 1239-1244 ◽  
Author(s):  
Emine Ülker ◽  
Muammer Kavanoz

A Pt electrode modified by polyaniline–poly(3-methylthiophene)–poly(3,3′-diaminobenzidine) was used for amperometric determination of epinephrine in a solution of NaHSO4/Na2SO4 (pH 2.0). For these studies, potentials between 0.40 and 0.50 V were applied, and the best response was obtained at 0.45 V. The limit of detection, limit of quantification, and the linear dynamic range were 1.23 × 10−4, 4.10 × 10−4, and 4.10 × 10−4 to 100.0 mmol L−1, respectively. These results were compared with determinations using Pt electrodes that were coated and uncoated with homopolymers. To check the accuracy of the developed method and the matrices interference, determination of epinephrine was performed in human serum samples using this modified electrode. The epinephrine concentrations were adjusted to 1.0 and 5.0 mmol L−1, and recovery values were calculated as 100.4% and 96.8%, respectively. It is significant that the determination of epinephrine was carried out at a lower potential (0.45 V) than the oxidation potential of epinephrine (0.65 V) without any matrix effect.


2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Ziad J. Sahab ◽  
Suzan M. Semaan ◽  
Qing-Xiang Amy Sang

Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.


2019 ◽  
Vol 43 (46) ◽  
pp. 17937-17940 ◽  
Author(s):  
Zideng Gao ◽  
Shunyi Wang ◽  
Zijun Xu ◽  
Jin Liu ◽  
Yuanfang Huang ◽  
...  

Novel cationic carbon dots were synthesized in a simple way and applied to detect K+ in human serum samples with ultra-high sensitivity.


1989 ◽  
Vol 35 (8) ◽  
pp. 1756-1760 ◽  
Author(s):  
B B Miller ◽  
W E Turner

Abstract This enzyme immunoassay (EIA) was developed to measure pyridoxal 5'-phosphate bound to albumin (PLP-HSA) in human serum. The monoclonal antibody titer was 1:2000 and a sequential saturation analysis curve, prepared with samples containing from 10 to 1000 nmol/L, showed a 50% inhibition of antibody at 50 nmol of the conjugate per liter. The lower limit of detection for PLP-HSA was 10 nmol/L, a sensitivity 1000-fold greater than that for any potential interferent. When serum samples gave negative results in the assay, we compared the antigenicity of the principal sites for PLP binding on HSA. It was apparent that the preferred physiological site was not antigenic; however, three additional sites for PLP binding on HSA elicited comparable antibody avidity. This EIA is potentially quite sensitive and specific for PLP-HSA, but considerable additional effort is required to convert serum PLP to an HSA-bound form detectable in the assay, which limits its application as a screening method.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fabien Francois ◽  
Loubna Naimi ◽  
Xavier Roblin ◽  
Anne-Emmanuelle Berger ◽  
Stephane Paul

Abstract Background ABP501 is a biosimilar to Reference Adalimumab (HUMIRA®) produced by AMGEN. Adalimumab (ADA) has a marketing authorization for Crohn's disease, ulcerative colitis and other inflammatory or autoimmune diseases. The aim of this study was to evaluate the LISA-TRACKER assays developed by Theradiag (France), for the monitoring of ABP501 and anti-ABP501 antibodies in human serum. Results 68 ABP501 clinical samples were measured with the LISA TRACKER Duo Adalimumab assay. LISA TRACKER has been validated as suitable for quantification of ABP501 in human serum samples. Accuracy of the LISA-TRACKER was measured using 3 human serum matrices spiked with known levels of biosimilar, 3 levels spanning the dynamic range. Percentages of recovery were ranged from 90 to 120% for biosimilar batch1, and between 93 and 105% for biosimilar batch2. The acceptance criteria (CV < 20%) were met for intra-run (from 3.8 to 16.5%) and inter-run imprecision (from 4.4 to 13.9%) including the two batches. All results were comprised within ± 20% from results, obtained with the kit and sample unexposed in order to evaluate stability of the sample, stability of the kit and consistency of the results. In any case, but two, all percentages of inhibition were > 50% for specificity. Specificity was tested with Biosimilar spiked samples, Biosimilar with Humira® spiked samples, and clinical samples from patients treated with adalimumab biosimilar. All of these samples were spiked with polyclonal antibodies directed against Humira®. Specificity inhibition and specificity detection steps were also part of the validation parameters. Reagents made with ABP501 gave similar results than reagents made with Humira® meeting acceptance criteria. Conclusions LISA-TRACKER ADA and anti-ADA assays are reliable for the monitoring of patients treated with ABP501.


Bioanalysis ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 53-65
Author(s):  
Nikunj N Tanna ◽  
Mary E Lame ◽  
Mark Wrona

Aim: Developing LC–MS methods for biomolecules is often challenging due to issues with molecular size and complexity, nonspecific binding, protein binding, solubility and sensitivity. As a result, complex sample preparation workflows, including immune-affinity and/or protein digestion and lengthy analysis potentially using nano-flow LC, may be needed to achieve the required sensitivity. This work aims to provide a simple, sensitive, fast and robust method for quantification of intact IGF-I from human serum using UPLC–MS/MS. Methods: IGF-I serum samples were denatured with sodium dodecyl sulfate, followed by organic protein precipitation to effectively disrupt protein binding and subsequent SPE of the resulting supernatant for sample cleanup and enrichment prior to LC–MS/MS analysis. Separation was performed on an analytical scale LC using a reversed-phase column containing <2 μm solid core particle followed by detection on a tandem quadrupole MS in multiple reaction monitoring mode. Results: Intact IGF-I was quantified from serum using the method described above at a LLOQ of 5 ng/ml with a dynamic range 5–1000 ng/ml (r2>0.99) and mean accuracy of 101.76%. Accuracies for quality control samples were between 93.9–107.7% with RSD <7%. Conclusion: The analytical sensitivity, linear dynamic range and excellent reproducibility of this method reliably measures endogenous and elevated serum IGF-I levels, demonstrating its utility in discovery, bioanalysis and clinical research.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 228 ◽  
Author(s):  
Shurong Tang ◽  
Xiuhua You ◽  
Quanhui Fang ◽  
Xin Li ◽  
Guangwen Li ◽  
...  

A novel turn-on fluorescence assay was developed for the rapid detection of glutathione (GSH) based on the inner-filter effect (IFE) and redox reaction. Molybdenum disulfide quantum dots (MoS2 QDs), which have stable fluorescent properties, were synthesized with hydrothermal method. Manganese dioxide nanosheets (MnO2 NSs) were prepared by exfoliating the bulk δ-MnO2 material in bovine serum albumin (BSA) aqueous solution. The morphology structures of the prepared nanoparticles were characterized by transmission electron microscope (TEM). Studies have shown that the fluorescence of MoS2 QDs could be quenched in the presence of MnO2 NSs as a result of the IFE, and is recovered after the addition of GSH to dissolve the MnO2 NSs. The fluorescence intensity showed a good linear relationship with the GSH concentration in the range 20–2500 μM, the limit of detection was 1.0 μM. The detection method was applied to the analysis of GSH in human serum samples. This simple, rapid, and cost-effective method has great potential in analyzing GSH and in disease diagnosis.


2021 ◽  
Author(s):  
Chun-Yao Huang ◽  
Chi-Jung Chang ◽  
Bohr-Ran Huang ◽  
Chien-Hsing Lu ◽  
jemkun chen

Abstract Background: Separation of macromolecules or particles from a colloid system to from gradient structure on the surface has been employed for biosensing systems, suggesting an enhancement of the chemical and physical features of particles. Performance of an electrochemiluminescence (ECL) immunosensor was employed to improve with a particle gradient.Results: Magnetic beads with silicon dioxide coating were adopted as nanocarriers for gradient manipulation and immobilized with the primary antibody. Cadmium telluride quantum dots (CdTe QDs) were coated with a layer of protein G for conjugation and orientation of secondary antibody as signal labels. ECL immunosensor gradients upon the electrode were formed by magnetolithography with magnetized nickel masks of column and stripe arrays at various scales. The immunosensor generally aggregated as island on the substrate through a dry process of water evaporation leading to a decrease of efficiency in the characteristic signals. Stripe arrays of magnetized nickel were designed to generate cylindrical magnetic flux on the substrate to improve the particle manipulation with the gradient. Various gradients of the sandwich-structured immunosensor substantially affected the electrochemical performance. Compared to the gradient-free immunosensor, the gradient of the immunosensor generated using the 3-μm-stripe array mask of magnetolithography enhanced the ECL intensity ~2.2 times. Conclusions: The results of quantification of human serum albumin (HSA) with the gradient immunosensor showed a broad linear range (15–420 ng mL−1), a low limit of detection (8 ng mL−1) and high reliability for HSA-spiked serum samples, indicating that the immunosensor gradient substantially enhances the performance of the ECL assay.


2020 ◽  
Author(s):  
Fabien FRANCOIS ◽  
Loubna NAIMI ◽  
Xavier ROBLIN ◽  
Anne-Emmanuelle Berger ◽  
Stephane Paul

Abstract Background. ABP501 is a biosimilar to Reference Adalimumab (HUMIRA®) produced by AMGEN. Adalimumab (ADA) has marketing authorization for Crohn's disease, ulcerative colitis and other inflammatory or autoimmune diseases. The aim of this study was to evaluate the LISA-TRACKER assays developed by Theradiag (France), for the monitoring of ABP501 and anti-ABP501 antibodies in human serum. Methods. Accuracy of the LISA-TRACKER was measured using 3 human serum matrices spiked with known levels of biosimilar, 3 levels spanning the dynamic range. Specificity was tested with Biosimilar spiked samples, Biosimilar with Humira® spiked samples, and clinical samples from patients treated with adalimumab biosimilar. All of these samples were spiked with polyclonal antibodies directed against Humira®. Intra-run, inter-run imprecision, inhibition, kit’s stability, specificity inhibition and specificity detection steps were also part of the LISA-TRACKER Duo Adalimumab assay validation parameters. Results. 68 ABP501 clinical samples were measured with the LISA TRACKER Duo Adalimumab assay. LISA TRACKER has been validated as suitable for quantification of ABP501 in human serum samples. Concerning accuracy, percentages of recovery were ranged from 90–120% for biosimilar batch1, and between 93% and 105% for biosimilar batch2. The acceptance criteria (CV < 20%) were met for intra-run (from 3.8–16.5%) and inter-run imprecision (from 4.4–13.9%) including the two batches. All results were comprised within +/-20% from results, obtained with the kit and sample unexposed in order to evaluate stability of the sample, stability of the kit and consistency of the results. In any case but two, all percentages of inhibition were > 50% for specificity. Reagents made with ABP501 gave similar results than reagents made with Humira® meeting acceptance criteria. Conclusions. LISA-TRACKER ADA and anti-ADA assays are reliable for the monitoring of patients treated with ABP501.


NANO ◽  
2018 ◽  
Vol 13 (01) ◽  
pp. 1850001 ◽  
Author(s):  
Yongfeng Gao ◽  
Yuanhui Feng ◽  
Lu Zhou ◽  
Lucia Petti ◽  
Zhe Wang ◽  
...  

Ultrasensitive detection of alpha-fetoprotein (AFP) is critical for the early diagnosis of liver cancer. In this work, a novel surface-enhanced Raman scattering (SERS)-based immunoassay complex has been successfully developed for the detection of AFP by using the Au-Ag alloy nanoparticals and the Ag/AgBr hybrid nanostructure. As the typical bimetal or metal/semiconductor plasmonic materials, besides the strong SERS enhancement characteristics, the Au-Ag alloy nanoparticals exhibit excellent monodispersity and the Ag/AgBr hybrid nanostructure demonstrates good stability. The experimental results show that the SERS-based immunoassay of AFP presents a low limit of detection of 1.86[Formula: see text]fg/mL and a broad dynamic range from 2[Formula: see text]fg/mL to 0.8[Formula: see text][Formula: see text]g/mL. Furthermore, the clinical applicability of the proposed SERS-based immunoassay has been assessed by the detection of AFP in the human serum samples of cancer patient and healthy person. The test data are consistent well with that of chemiluminescence immunoassay (CLIA) in the relative errors of [Formula: see text]8.82–8.06% and show better detection sensitivity. It reveals that the proposed immunoassay protocol is significant for giving insight into the design of ultrasensitive biosensor and the point-of-care testing of cancers.


Sign in / Sign up

Export Citation Format

Share Document